/* * Copyright (C) 2008, 2012, 2014-2016 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef AbstractMacroAssembler_h #define AbstractMacroAssembler_h #include "AbortReason.h" #include "AssemblerBuffer.h" #include "CodeLocation.h" #include "MacroAssemblerCodeRef.h" #include "Options.h" #include #include #include #include #if ENABLE(ASSEMBLER) namespace JSC { inline bool isARMv7IDIVSupported() { #if HAVE(ARM_IDIV_INSTRUCTIONS) return true; #else return false; #endif } inline bool isARM64() { #if CPU(ARM64) return true; #else return false; #endif } inline bool isX86() { #if CPU(X86_64) || CPU(X86) return true; #else return false; #endif } inline bool isX86_64() { #if CPU(X86_64) return true; #else return false; #endif } inline bool optimizeForARMv7IDIVSupported() { return isARMv7IDIVSupported() && Options::useArchitectureSpecificOptimizations(); } inline bool optimizeForARM64() { return isARM64() && Options::useArchitectureSpecificOptimizations(); } inline bool optimizeForX86() { return isX86() && Options::useArchitectureSpecificOptimizations(); } inline bool optimizeForX86_64() { return isX86_64() && Options::useArchitectureSpecificOptimizations(); } class AllowMacroScratchRegisterUsage; class DisallowMacroScratchRegisterUsage; class LinkBuffer; class Watchpoint; namespace DFG { struct OSRExit; } template class AbstractMacroAssembler { public: friend class JITWriteBarrierBase; typedef AbstractMacroAssembler AbstractMacroAssemblerType; typedef AssemblerType AssemblerType_T; typedef MacroAssemblerCodePtr CodePtr; typedef MacroAssemblerCodeRef CodeRef; class Jump; typedef typename AssemblerType::RegisterID RegisterID; typedef typename AssemblerType::FPRegisterID FPRegisterID; static constexpr RegisterID firstRegister() { return AssemblerType::firstRegister(); } static constexpr RegisterID lastRegister() { return AssemblerType::lastRegister(); } static constexpr FPRegisterID firstFPRegister() { return AssemblerType::firstFPRegister(); } static constexpr FPRegisterID lastFPRegister() { return AssemblerType::lastFPRegister(); } // Section 1: MacroAssembler operand types // // The following types are used as operands to MacroAssembler operations, // describing immediate and memory operands to the instructions to be planted. enum Scale { TimesOne, TimesTwo, TimesFour, TimesEight, }; static Scale timesPtr() { if (sizeof(void*) == 4) return TimesFour; return TimesEight; } struct BaseIndex; // Address: // // Describes a simple base-offset address. struct Address { explicit Address(RegisterID base, int32_t offset = 0) : base(base) , offset(offset) { } Address withOffset(int32_t additionalOffset) { return Address(base, offset + additionalOffset); } BaseIndex indexedBy(RegisterID index, Scale) const; RegisterID base; int32_t offset; }; struct ExtendedAddress { explicit ExtendedAddress(RegisterID base, intptr_t offset = 0) : base(base) , offset(offset) { } RegisterID base; intptr_t offset; }; // ImplicitAddress: // // This class is used for explicit 'load' and 'store' operations // (as opposed to situations in which a memory operand is provided // to a generic operation, such as an integer arithmetic instruction). // // In the case of a load (or store) operation we want to permit // addresses to be implicitly constructed, e.g. the two calls: // // load32(Address(addrReg), destReg); // load32(addrReg, destReg); // // Are equivalent, and the explicit wrapping of the Address in the former // is unnecessary. struct ImplicitAddress { ImplicitAddress(RegisterID base) : base(base) , offset(0) { } ImplicitAddress(Address address) : base(address.base) , offset(address.offset) { } RegisterID base; int32_t offset; }; // BaseIndex: // // Describes a complex addressing mode. struct BaseIndex { BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) : base(base) , index(index) , scale(scale) , offset(offset) { } RegisterID base; RegisterID index; Scale scale; int32_t offset; BaseIndex withOffset(int32_t additionalOffset) { return BaseIndex(base, index, scale, offset + additionalOffset); } }; // AbsoluteAddress: // // Describes an memory operand given by a pointer. For regular load & store // operations an unwrapped void* will be used, rather than using this. struct AbsoluteAddress { explicit AbsoluteAddress(const void* ptr) : m_ptr(ptr) { } const void* m_ptr; }; // TrustedImmPtr: // // A pointer sized immediate operand to an instruction - this is wrapped // in a class requiring explicit construction in order to differentiate // from pointers used as absolute addresses to memory operations struct TrustedImmPtr { TrustedImmPtr() { } explicit TrustedImmPtr(const void* value) : m_value(value) { } // This is only here so that TrustedImmPtr(0) does not confuse the C++ // overload handling rules. explicit TrustedImmPtr(int value) : m_value(0) { ASSERT_UNUSED(value, !value); } explicit TrustedImmPtr(size_t value) : m_value(reinterpret_cast(value)) { } intptr_t asIntptr() { return reinterpret_cast(m_value); } const void* m_value; }; struct ImmPtr : private TrustedImmPtr { explicit ImmPtr(const void* value) : TrustedImmPtr(value) { } TrustedImmPtr asTrustedImmPtr() { return *this; } }; // TrustedImm32: // // A 32bit immediate operand to an instruction - this is wrapped in a // class requiring explicit construction in order to prevent RegisterIDs // (which are implemented as an enum) from accidentally being passed as // immediate values. struct TrustedImm32 { TrustedImm32() { } explicit TrustedImm32(int32_t value) : m_value(value) { } #if !CPU(X86_64) explicit TrustedImm32(TrustedImmPtr ptr) : m_value(ptr.asIntptr()) { } #endif int32_t m_value; }; struct Imm32 : private TrustedImm32 { explicit Imm32(int32_t value) : TrustedImm32(value) { } #if !CPU(X86_64) explicit Imm32(TrustedImmPtr ptr) : TrustedImm32(ptr) { } #endif const TrustedImm32& asTrustedImm32() const { return *this; } }; // TrustedImm64: // // A 64bit immediate operand to an instruction - this is wrapped in a // class requiring explicit construction in order to prevent RegisterIDs // (which are implemented as an enum) from accidentally being passed as // immediate values. struct TrustedImm64 { TrustedImm64() { } explicit TrustedImm64(int64_t value) : m_value(value) { } #if CPU(X86_64) || CPU(ARM64) explicit TrustedImm64(TrustedImmPtr ptr) : m_value(ptr.asIntptr()) { } #endif int64_t m_value; }; struct Imm64 : private TrustedImm64 { explicit Imm64(int64_t value) : TrustedImm64(value) { } #if CPU(X86_64) || CPU(ARM64) explicit Imm64(TrustedImmPtr ptr) : TrustedImm64(ptr) { } #endif const TrustedImm64& asTrustedImm64() const { return *this; } }; // Section 2: MacroAssembler code buffer handles // // The following types are used to reference items in the code buffer // during JIT code generation. For example, the type Jump is used to // track the location of a jump instruction so that it may later be // linked to a label marking its destination. // Label: // // A Label records a point in the generated instruction stream, typically such that // it may be used as a destination for a jump. class Label { template friend class AbstractMacroAssembler; friend struct DFG::OSRExit; friend class Jump; friend class MacroAssemblerCodeRef; friend class LinkBuffer; friend class Watchpoint; public: Label() { } Label(AbstractMacroAssemblerType* masm) : m_label(masm->m_assembler.label()) { masm->invalidateAllTempRegisters(); } bool operator==(const Label& other) const { return m_label == other.m_label; } bool isSet() const { return m_label.isSet(); } private: AssemblerLabel m_label; }; // ConvertibleLoadLabel: // // A ConvertibleLoadLabel records a loadPtr instruction that can be patched to an addPtr // so that: // // loadPtr(Address(a, i), b) // // becomes: // // addPtr(TrustedImmPtr(i), a, b) class ConvertibleLoadLabel { template friend class AbstractMacroAssembler; friend class LinkBuffer; public: ConvertibleLoadLabel() { } ConvertibleLoadLabel(AbstractMacroAssemblerType* masm) : m_label(masm->m_assembler.labelIgnoringWatchpoints()) { } bool isSet() const { return m_label.isSet(); } private: AssemblerLabel m_label; }; // DataLabelPtr: // // A DataLabelPtr is used to refer to a location in the code containing a pointer to be // patched after the code has been generated. class DataLabelPtr { template friend class AbstractMacroAssembler; friend class LinkBuffer; public: DataLabelPtr() { } DataLabelPtr(AbstractMacroAssemblerType* masm) : m_label(masm->m_assembler.label()) { } bool isSet() const { return m_label.isSet(); } private: AssemblerLabel m_label; }; // DataLabel32: // // A DataLabel32 is used to refer to a location in the code containing a 32-bit constant to be // patched after the code has been generated. class DataLabel32 { template friend class AbstractMacroAssembler; friend class LinkBuffer; public: DataLabel32() { } DataLabel32(AbstractMacroAssemblerType* masm) : m_label(masm->m_assembler.label()) { } AssemblerLabel label() const { return m_label; } private: AssemblerLabel m_label; }; // DataLabelCompact: // // A DataLabelCompact is used to refer to a location in the code containing a // compact immediate to be patched after the code has been generated. class DataLabelCompact { template friend class AbstractMacroAssembler; friend class LinkBuffer; public: DataLabelCompact() { } DataLabelCompact(AbstractMacroAssemblerType* masm) : m_label(masm->m_assembler.label()) { } DataLabelCompact(AssemblerLabel label) : m_label(label) { } AssemblerLabel label() const { return m_label; } private: AssemblerLabel m_label; }; // Call: // // A Call object is a reference to a call instruction that has been planted // into the code buffer - it is typically used to link the call, setting the // relative offset such that when executed it will call to the desired // destination. class Call { template friend class AbstractMacroAssembler; public: enum Flags { None = 0x0, Linkable = 0x1, Near = 0x2, Tail = 0x4, LinkableNear = 0x3, LinkableNearTail = 0x7, }; Call() : m_flags(None) { } Call(AssemblerLabel jmp, Flags flags) : m_label(jmp) , m_flags(flags) { } bool isFlagSet(Flags flag) { return m_flags & flag; } static Call fromTailJump(Jump jump) { return Call(jump.m_label, Linkable); } AssemblerLabel m_label; private: Flags m_flags; }; // Jump: // // A jump object is a reference to a jump instruction that has been planted // into the code buffer - it is typically used to link the jump, setting the // relative offset such that when executed it will jump to the desired // destination. class Jump { template friend class AbstractMacroAssembler; friend class Call; friend struct DFG::OSRExit; friend class LinkBuffer; public: Jump() { } #if CPU(ARM_THUMB2) // Fixme: this information should be stored in the instruction stream, not in the Jump object. Jump(AssemblerLabel jmp, ARMv7Assembler::JumpType type = ARMv7Assembler::JumpNoCondition, ARMv7Assembler::Condition condition = ARMv7Assembler::ConditionInvalid) : m_label(jmp) , m_type(type) , m_condition(condition) { } #elif CPU(ARM64) Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type = ARM64Assembler::JumpNoCondition, ARM64Assembler::Condition condition = ARM64Assembler::ConditionInvalid) : m_label(jmp) , m_type(type) , m_condition(condition) { } Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, bool is64Bit, ARM64Assembler::RegisterID compareRegister) : m_label(jmp) , m_type(type) , m_condition(condition) , m_is64Bit(is64Bit) , m_compareRegister(compareRegister) { ASSERT((type == ARM64Assembler::JumpCompareAndBranch) || (type == ARM64Assembler::JumpCompareAndBranchFixedSize)); } Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, unsigned bitNumber, ARM64Assembler::RegisterID compareRegister) : m_label(jmp) , m_type(type) , m_condition(condition) , m_bitNumber(bitNumber) , m_compareRegister(compareRegister) { ASSERT((type == ARM64Assembler::JumpTestBit) || (type == ARM64Assembler::JumpTestBitFixedSize)); } #elif CPU(SH4) Jump(AssemblerLabel jmp, SH4Assembler::JumpType type = SH4Assembler::JumpFar) : m_label(jmp) , m_type(type) { } #else Jump(AssemblerLabel jmp) : m_label(jmp) { } #endif Label label() const { Label result; result.m_label = m_label; return result; } void link(AbstractMacroAssemblerType* masm) const { masm->invalidateAllTempRegisters(); #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) masm->checkRegisterAllocationAgainstBranchRange(m_label.m_offset, masm->debugOffset()); #endif #if CPU(ARM_THUMB2) masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); #elif CPU(ARM64) if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_is64Bit, m_compareRegister); else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_bitNumber, m_compareRegister); else masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); #elif CPU(SH4) masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type); #else masm->m_assembler.linkJump(m_label, masm->m_assembler.label()); #endif } void linkTo(Label label, AbstractMacroAssemblerType* masm) const { #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) masm->checkRegisterAllocationAgainstBranchRange(label.m_label.m_offset, m_label.m_offset); #endif #if CPU(ARM_THUMB2) masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); #elif CPU(ARM64) if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_is64Bit, m_compareRegister); else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_bitNumber, m_compareRegister); else masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); #else masm->m_assembler.linkJump(m_label, label.m_label); #endif } bool isSet() const { return m_label.isSet(); } private: AssemblerLabel m_label; #if CPU(ARM_THUMB2) ARMv7Assembler::JumpType m_type; ARMv7Assembler::Condition m_condition; #elif CPU(ARM64) ARM64Assembler::JumpType m_type; ARM64Assembler::Condition m_condition; bool m_is64Bit; unsigned m_bitNumber; ARM64Assembler::RegisterID m_compareRegister; #endif #if CPU(SH4) SH4Assembler::JumpType m_type; #endif }; struct PatchableJump { PatchableJump() { } explicit PatchableJump(Jump jump) : m_jump(jump) { } operator Jump&() { return m_jump; } Jump m_jump; }; // JumpList: // // A JumpList is a set of Jump objects. // All jumps in the set will be linked to the same destination. class JumpList { public: typedef Vector JumpVector; JumpList() { } JumpList(Jump jump) { if (jump.isSet()) append(jump); } void link(AbstractMacroAssemblerType* masm) { size_t size = m_jumps.size(); for (size_t i = 0; i < size; ++i) m_jumps[i].link(masm); m_jumps.clear(); } void linkTo(Label label, AbstractMacroAssemblerType* masm) { size_t size = m_jumps.size(); for (size_t i = 0; i < size; ++i) m_jumps[i].linkTo(label, masm); m_jumps.clear(); } void append(Jump jump) { m_jumps.append(jump); } void append(const JumpList& other) { m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); } bool empty() { return !m_jumps.size(); } void clear() { m_jumps.clear(); } const JumpVector& jumps() const { return m_jumps; } private: JumpVector m_jumps; }; // Section 3: Misc admin methods #if ENABLE(DFG_JIT) Label labelIgnoringWatchpoints() { Label result; result.m_label = m_assembler.labelIgnoringWatchpoints(); return result; } #else Label labelIgnoringWatchpoints() { return label(); } #endif Label label() { return Label(this); } void padBeforePatch() { // Rely on the fact that asking for a label already does the padding. (void)label(); } Label watchpointLabel() { Label result; result.m_label = m_assembler.labelForWatchpoint(); return result; } Label align() { m_assembler.align(16); return Label(this); } #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) class RegisterAllocationOffset { public: RegisterAllocationOffset(unsigned offset) : m_offset(offset) { } void checkOffsets(unsigned low, unsigned high) { RELEASE_ASSERT_WITH_MESSAGE(!(low <= m_offset && m_offset <= high), "Unsafe branch over register allocation at instruction offset %u in jump offset range %u..%u", m_offset, low, high); } private: unsigned m_offset; }; void addRegisterAllocationAtOffset(unsigned offset) { m_registerAllocationForOffsets.append(RegisterAllocationOffset(offset)); } void clearRegisterAllocationOffsets() { m_registerAllocationForOffsets.clear(); } void checkRegisterAllocationAgainstBranchRange(unsigned offset1, unsigned offset2) { if (offset1 > offset2) std::swap(offset1, offset2); size_t size = m_registerAllocationForOffsets.size(); for (size_t i = 0; i < size; ++i) m_registerAllocationForOffsets[i].checkOffsets(offset1, offset2); } #endif template static ptrdiff_t differenceBetween(T from, U to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); } static ptrdiff_t differenceBetweenCodePtr(const MacroAssemblerCodePtr& a, const MacroAssemblerCodePtr& b) { return reinterpret_cast(b.executableAddress()) - reinterpret_cast(a.executableAddress()); } unsigned debugOffset() { return m_assembler.debugOffset(); } ALWAYS_INLINE static void cacheFlush(void* code, size_t size) { AssemblerType::cacheFlush(code, size); } #if ENABLE(MASM_PROBE) struct CPUState { #define DECLARE_REGISTER(_type, _regName) \ _type _regName; FOR_EACH_CPU_REGISTER(DECLARE_REGISTER) #undef DECLARE_REGISTER static const char* gprName(RegisterID regID) { switch (regID) { #define DECLARE_REGISTER(_type, _regName) \ case RegisterID::_regName: \ return #_regName; FOR_EACH_CPU_GPREGISTER(DECLARE_REGISTER) #undef DECLARE_REGISTER default: RELEASE_ASSERT_NOT_REACHED(); } } static const char* fprName(FPRegisterID regID) { switch (regID) { #define DECLARE_REGISTER(_type, _regName) \ case FPRegisterID::_regName: \ return #_regName; FOR_EACH_CPU_FPREGISTER(DECLARE_REGISTER) #undef DECLARE_REGISTER default: RELEASE_ASSERT_NOT_REACHED(); } } void*& gpr(RegisterID regID) { switch (regID) { #define DECLARE_REGISTER(_type, _regName) \ case RegisterID::_regName: \ return _regName; FOR_EACH_CPU_GPREGISTER(DECLARE_REGISTER) #undef DECLARE_REGISTER default: RELEASE_ASSERT_NOT_REACHED(); } } double& fpr(FPRegisterID regID) { switch (regID) { #define DECLARE_REGISTER(_type, _regName) \ case FPRegisterID::_regName: \ return _regName; FOR_EACH_CPU_FPREGISTER(DECLARE_REGISTER) #undef DECLARE_REGISTER default: RELEASE_ASSERT_NOT_REACHED(); } } }; struct ProbeContext; typedef void (*ProbeFunction)(struct ProbeContext*); struct ProbeContext { ProbeFunction probeFunction; void* arg1; void* arg2; CPUState cpu; // Convenience methods: void*& gpr(RegisterID regID) { return cpu.gpr(regID); } double& fpr(FPRegisterID regID) { return cpu.fpr(regID); } const char* gprName(RegisterID regID) { return cpu.gprName(regID); } const char* fprName(FPRegisterID regID) { return cpu.fprName(regID); } }; // This function emits code to preserve the CPUState (e.g. registers), // call a user supplied probe function, and restore the CPUState before // continuing with other JIT generated code. // // The user supplied probe function will be called with a single pointer to // a ProbeContext struct (defined above) which contains, among other things, // the preserved CPUState. This allows the user probe function to inspect // the CPUState at that point in the JIT generated code. // // If the user probe function alters the register values in the ProbeContext, // the altered values will be loaded into the CPU registers when the probe // returns. // // The ProbeContext is stack allocated and is only valid for the duration // of the call to the user probe function. // // Note: probe() should be implemented by the target specific MacroAssembler. // This prototype is only provided here to document the interface. void probe(ProbeFunction, void* arg1, void* arg2); #endif // ENABLE(MASM_PROBE) AssemblerType m_assembler; static void linkJump(void* code, Jump jump, CodeLocationLabel target) { AssemblerType::linkJump(code, jump.m_label, target.dataLocation()); } static void linkPointer(void* code, AssemblerLabel label, void* value) { AssemblerType::linkPointer(code, label, value); } static void* getLinkerAddress(void* code, AssemblerLabel label) { return AssemblerType::getRelocatedAddress(code, label); } static unsigned getLinkerCallReturnOffset(Call call) { return AssemblerType::getCallReturnOffset(call.m_label); } static void repatchJump(CodeLocationJump jump, CodeLocationLabel destination) { AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation()); } static void repatchNearCall(CodeLocationNearCall nearCall, CodeLocationLabel destination) { switch (nearCall.callMode()) { case NearCallMode::Tail: AssemblerType::relinkJump(nearCall.dataLocation(), destination.dataLocation()); return; case NearCallMode::Regular: AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress()); return; } RELEASE_ASSERT_NOT_REACHED(); } static void repatchCompact(CodeLocationDataLabelCompact dataLabelCompact, int32_t value) { AssemblerType::repatchCompact(dataLabelCompact.dataLocation(), value); } static void repatchInt32(CodeLocationDataLabel32 dataLabel32, int32_t value) { AssemblerType::repatchInt32(dataLabel32.dataLocation(), value); } static void repatchPointer(CodeLocationDataLabelPtr dataLabelPtr, void* value) { AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value); } static void* readPointer(CodeLocationDataLabelPtr dataLabelPtr) { return AssemblerType::readPointer(dataLabelPtr.dataLocation()); } static void replaceWithLoad(CodeLocationConvertibleLoad label) { AssemblerType::replaceWithLoad(label.dataLocation()); } static void replaceWithAddressComputation(CodeLocationConvertibleLoad label) { AssemblerType::replaceWithAddressComputation(label.dataLocation()); } template void addLinkTask(const Functor& functor) { m_linkTasks.append(createSharedTask(functor)); } protected: AbstractMacroAssembler() : m_randomSource(0) { invalidateAllTempRegisters(); } uint32_t random() { if (!m_randomSourceIsInitialized) { m_randomSourceIsInitialized = true; m_randomSource.setSeed(cryptographicallyRandomNumber()); } return m_randomSource.getUint32(); } bool m_randomSourceIsInitialized { false }; WeakRandom m_randomSource; #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) Vector m_registerAllocationForOffsets; #endif static bool haveScratchRegisterForBlinding() { return false; } static RegisterID scratchRegisterForBlinding() { UNREACHABLE_FOR_PLATFORM(); return firstRegister(); } static bool canBlind() { return false; } static bool shouldBlindForSpecificArch(uint32_t) { return false; } static bool shouldBlindForSpecificArch(uint64_t) { return false; } class CachedTempRegister { friend class DataLabelPtr; friend class DataLabel32; friend class DataLabelCompact; friend class Jump; friend class Label; public: CachedTempRegister(AbstractMacroAssemblerType* masm, RegisterID registerID) : m_masm(masm) , m_registerID(registerID) , m_value(0) , m_validBit(1 << static_cast(registerID)) { ASSERT(static_cast(registerID) < (sizeof(unsigned) * 8)); } ALWAYS_INLINE RegisterID registerIDInvalidate() { invalidate(); return m_registerID; } ALWAYS_INLINE RegisterID registerIDNoInvalidate() { return m_registerID; } bool value(intptr_t& value) { value = m_value; return m_masm->isTempRegisterValid(m_validBit); } void setValue(intptr_t value) { m_value = value; m_masm->setTempRegisterValid(m_validBit); } ALWAYS_INLINE void invalidate() { m_masm->clearTempRegisterValid(m_validBit); } private: AbstractMacroAssemblerType* m_masm; RegisterID m_registerID; intptr_t m_value; unsigned m_validBit; }; ALWAYS_INLINE void invalidateAllTempRegisters() { m_tempRegistersValidBits = 0; } ALWAYS_INLINE bool isTempRegisterValid(unsigned registerMask) { return (m_tempRegistersValidBits & registerMask); } ALWAYS_INLINE void clearTempRegisterValid(unsigned registerMask) { m_tempRegistersValidBits &= ~registerMask; } ALWAYS_INLINE void setTempRegisterValid(unsigned registerMask) { m_tempRegistersValidBits |= registerMask; } friend class AllowMacroScratchRegisterUsage; friend class DisallowMacroScratchRegisterUsage; unsigned m_tempRegistersValidBits; bool m_allowScratchRegister { true }; Vector>> m_linkTasks; friend class LinkBuffer; }; // class AbstractMacroAssembler template inline typename AbstractMacroAssembler::BaseIndex AbstractMacroAssembler::Address::indexedBy( typename AbstractMacroAssembler::RegisterID index, typename AbstractMacroAssembler::Scale scale) const { return BaseIndex(base, index, scale, offset); } } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // AbstractMacroAssembler_h