/* * Copyright (C) 2012-2015 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "LinkBuffer.h" #if ENABLE(ASSEMBLER) #include "CodeBlock.h" #include "JITCode.h" #include "JSCInlines.h" #include "Options.h" #include "VM.h" #include namespace JSC { bool shouldDumpDisassemblyFor(CodeBlock* codeBlock) { if (JITCode::isOptimizingJIT(codeBlock->jitType()) && Options::dumpDFGDisassembly()) return true; return Options::dumpDisassembly(); } LinkBuffer::CodeRef LinkBuffer::finalizeCodeWithoutDisassembly() { performFinalization(); ASSERT(m_didAllocate); if (m_executableMemory) return CodeRef(m_executableMemory); return CodeRef::createSelfManagedCodeRef(MacroAssemblerCodePtr(m_code)); } LinkBuffer::CodeRef LinkBuffer::finalizeCodeWithDisassembly(const char* format, ...) { CodeRef result = finalizeCodeWithoutDisassembly(); if (m_alreadyDisassembled) return result; StringPrintStream out; out.printf("Generated JIT code for "); va_list argList; va_start(argList, format); out.vprintf(format, argList); va_end(argList); out.printf(":\n"); out.printf(" Code at [%p, %p):\n", result.code().executableAddress(), static_cast(result.code().executableAddress()) + result.size()); CString header = out.toCString(); if (Options::asyncDisassembly()) { disassembleAsynchronously(header, result, m_size, " "); return result; } dataLog(header); disassemble(result.code(), m_size, " ", WTF::dataFile()); return result; } #if ENABLE(BRANCH_COMPACTION) static ALWAYS_INLINE void recordLinkOffsets(AssemblerData& assemblerData, int32_t regionStart, int32_t regionEnd, int32_t offset) { int32_t ptr = regionStart / sizeof(int32_t); const int32_t end = regionEnd / sizeof(int32_t); int32_t* offsets = reinterpret_cast_ptr(assemblerData.buffer()); while (ptr < end) offsets[ptr++] = offset; } template void LinkBuffer::copyCompactAndLinkCode(MacroAssembler& macroAssembler, void* ownerUID, JITCompilationEffort effort) { m_initialSize = macroAssembler.m_assembler.codeSize(); allocate(m_initialSize, ownerUID, effort); if (didFailToAllocate()) return; Vector& jumpsToLink = macroAssembler.jumpsToLink(); m_assemblerStorage = macroAssembler.m_assembler.buffer().releaseAssemblerData(); uint8_t* inData = reinterpret_cast(m_assemblerStorage.buffer()); AssemblerData outBuffer(m_size); uint8_t* outData = reinterpret_cast(outBuffer.buffer()); uint8_t* codeOutData = reinterpret_cast(m_code); int readPtr = 0; int writePtr = 0; unsigned jumpCount = jumpsToLink.size(); for (unsigned i = 0; i < jumpCount; ++i) { int offset = readPtr - writePtr; ASSERT(!(offset & 1)); // Copy the instructions from the last jump to the current one. size_t regionSize = jumpsToLink[i].from() - readPtr; InstructionType* copySource = reinterpret_cast_ptr(inData + readPtr); InstructionType* copyEnd = reinterpret_cast_ptr(inData + readPtr + regionSize); InstructionType* copyDst = reinterpret_cast_ptr(outData + writePtr); ASSERT(!(regionSize % 2)); ASSERT(!(readPtr % 2)); ASSERT(!(writePtr % 2)); while (copySource != copyEnd) *copyDst++ = *copySource++; recordLinkOffsets(m_assemblerStorage, readPtr, jumpsToLink[i].from(), offset); readPtr += regionSize; writePtr += regionSize; // Calculate absolute address of the jump target, in the case of backwards // branches we need to be precise, forward branches we are pessimistic const uint8_t* target; if (jumpsToLink[i].to() >= jumpsToLink[i].from()) target = codeOutData + jumpsToLink[i].to() - offset; // Compensate for what we have collapsed so far else target = codeOutData + jumpsToLink[i].to() - executableOffsetFor(jumpsToLink[i].to()); JumpLinkType jumpLinkType = MacroAssembler::computeJumpType(jumpsToLink[i], codeOutData + writePtr, target); // Compact branch if we can... if (MacroAssembler::canCompact(jumpsToLink[i].type())) { // Step back in the write stream int32_t delta = MacroAssembler::jumpSizeDelta(jumpsToLink[i].type(), jumpLinkType); if (delta) { writePtr -= delta; recordLinkOffsets(m_assemblerStorage, jumpsToLink[i].from() - delta, readPtr, readPtr - writePtr); } } jumpsToLink[i].setFrom(writePtr); } // Copy everything after the last jump memcpy(outData + writePtr, inData + readPtr, m_initialSize - readPtr); recordLinkOffsets(m_assemblerStorage, readPtr, m_initialSize, readPtr - writePtr); for (unsigned i = 0; i < jumpCount; ++i) { uint8_t* location = codeOutData + jumpsToLink[i].from(); uint8_t* target = codeOutData + jumpsToLink[i].to() - executableOffsetFor(jumpsToLink[i].to()); MacroAssembler::link(jumpsToLink[i], outData + jumpsToLink[i].from(), location, target); } jumpsToLink.clear(); shrink(writePtr + m_initialSize - readPtr); performJITMemcpy(m_code, outBuffer.buffer(), m_size); #if DUMP_LINK_STATISTICS dumpLinkStatistics(m_code, m_initialSize, m_size); #endif #if DUMP_CODE dumpCode(m_code, m_size); #endif } #endif void LinkBuffer::linkCode(MacroAssembler& macroAssembler, void* ownerUID, JITCompilationEffort effort) { #if !ENABLE(BRANCH_COMPACTION) #if defined(ASSEMBLER_HAS_CONSTANT_POOL) && ASSEMBLER_HAS_CONSTANT_POOL macroAssembler.m_assembler.buffer().flushConstantPool(false); #endif AssemblerBuffer& buffer = macroAssembler.m_assembler.buffer(); allocate(buffer.codeSize(), ownerUID, effort); if (!m_didAllocate) return; ASSERT(m_code); #if CPU(ARM_TRADITIONAL) macroAssembler.m_assembler.prepareExecutableCopy(m_code); #endif performJITMemcpy(m_code, buffer.data(), buffer.codeSize()); #if CPU(MIPS) macroAssembler.m_assembler.relocateJumps(buffer.data(), m_code); #endif #elif CPU(ARM_THUMB2) copyCompactAndLinkCode(macroAssembler, ownerUID, effort); #elif CPU(ARM64) copyCompactAndLinkCode(macroAssembler, ownerUID, effort); #endif m_linkTasks = WTFMove(macroAssembler.m_linkTasks); } void LinkBuffer::allocate(size_t initialSize, void* ownerUID, JITCompilationEffort effort) { if (m_code) { if (initialSize > m_size) return; m_didAllocate = true; m_size = initialSize; return; } ASSERT(m_vm != nullptr); m_executableMemory = m_vm->executableAllocator.allocate(*m_vm, initialSize, ownerUID, effort); if (!m_executableMemory) return; m_code = m_executableMemory->start(); m_size = initialSize; m_didAllocate = true; } void LinkBuffer::shrink(size_t newSize) { if (!m_executableMemory) return; m_size = newSize; m_executableMemory->shrink(m_size); } void LinkBuffer::performFinalization() { for (auto& task : m_linkTasks) task->run(*this); #ifndef NDEBUG ASSERT(!isCompilationThread()); ASSERT(!m_completed); ASSERT(isValid()); m_completed = true; #endif MacroAssembler::cacheFlush(code(), m_size); } #if DUMP_LINK_STATISTICS void LinkBuffer::dumpLinkStatistics(void* code, size_t initializeSize, size_t finalSize) { static unsigned linkCount = 0; static unsigned totalInitialSize = 0; static unsigned totalFinalSize = 0; linkCount++; totalInitialSize += initialSize; totalFinalSize += finalSize; dataLogF("link %p: orig %u, compact %u (delta %u, %.2f%%)\n", code, static_cast(initialSize), static_cast(finalSize), static_cast(initialSize - finalSize), 100.0 * (initialSize - finalSize) / initialSize); dataLogF("\ttotal %u: orig %u, compact %u (delta %u, %.2f%%)\n", linkCount, totalInitialSize, totalFinalSize, totalInitialSize - totalFinalSize, 100.0 * (totalInitialSize - totalFinalSize) / totalInitialSize); } #endif #if DUMP_CODE void LinkBuffer::dumpCode(void* code, size_t size) { #if CPU(ARM_THUMB2) // Dump the generated code in an asm file format that can be assembled and then disassembled // for debugging purposes. For example, save this output as jit.s: // gcc -arch armv7 -c jit.s // otool -tv jit.o static unsigned codeCount = 0; unsigned short* tcode = static_cast(code); size_t tsize = size / sizeof(short); char nameBuf[128]; snprintf(nameBuf, sizeof(nameBuf), "_jsc_jit%u", codeCount++); dataLogF("\t.syntax unified\n" "\t.section\t__TEXT,__text,regular,pure_instructions\n" "\t.globl\t%s\n" "\t.align 2\n" "\t.code 16\n" "\t.thumb_func\t%s\n" "# %p\n" "%s:\n", nameBuf, nameBuf, code, nameBuf); for (unsigned i = 0; i < tsize; i++) dataLogF("\t.short\t0x%x\n", tcode[i]); #elif CPU(ARM_TRADITIONAL) // gcc -c jit.s // objdump -D jit.o static unsigned codeCount = 0; unsigned int* tcode = static_cast(code); size_t tsize = size / sizeof(unsigned int); char nameBuf[128]; snprintf(nameBuf, sizeof(nameBuf), "_jsc_jit%u", codeCount++); dataLogF("\t.globl\t%s\n" "\t.align 4\n" "\t.code 32\n" "\t.text\n" "# %p\n" "%s:\n", nameBuf, code, nameBuf); for (unsigned i = 0; i < tsize; i++) dataLogF("\t.long\t0x%x\n", tcode[i]); #endif } #endif } // namespace JSC #endif // ENABLE(ASSEMBLER)