/* * Copyright (C) 2009-2010, 2014-2015 Apple Inc. All rights reserved. * Copyright (C) 2010 University of Szeged * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MacroAssemblerARMv7_h #define MacroAssemblerARMv7_h #if ENABLE(ASSEMBLER) #include "ARMv7Assembler.h" #include "AbstractMacroAssembler.h" namespace JSC { class MacroAssemblerARMv7 : public AbstractMacroAssembler { static const RegisterID dataTempRegister = ARMRegisters::ip; static const RegisterID addressTempRegister = ARMRegisters::r6; static const ARMRegisters::FPDoubleRegisterID fpTempRegister = ARMRegisters::d7; inline ARMRegisters::FPSingleRegisterID fpTempRegisterAsSingle() { return ARMRegisters::asSingle(fpTempRegister); } public: MacroAssemblerARMv7() : m_makeJumpPatchable(false) { } typedef ARMv7Assembler::LinkRecord LinkRecord; typedef ARMv7Assembler::JumpType JumpType; typedef ARMv7Assembler::JumpLinkType JumpLinkType; typedef ARMv7Assembler::Condition Condition; static const ARMv7Assembler::Condition DefaultCondition = ARMv7Assembler::ConditionInvalid; static const ARMv7Assembler::JumpType DefaultJump = ARMv7Assembler::JumpNoConditionFixedSize; static bool isCompactPtrAlignedAddressOffset(ptrdiff_t value) { return value >= -255 && value <= 255; } Vector& jumpsToLink() { return m_assembler.jumpsToLink(); } void* unlinkedCode() { return m_assembler.unlinkedCode(); } static bool canCompact(JumpType jumpType) { return ARMv7Assembler::canCompact(jumpType); } static JumpLinkType computeJumpType(JumpType jumpType, const uint8_t* from, const uint8_t* to) { return ARMv7Assembler::computeJumpType(jumpType, from, to); } static JumpLinkType computeJumpType(LinkRecord& record, const uint8_t* from, const uint8_t* to) { return ARMv7Assembler::computeJumpType(record, from, to); } static int jumpSizeDelta(JumpType jumpType, JumpLinkType jumpLinkType) { return ARMv7Assembler::jumpSizeDelta(jumpType, jumpLinkType); } static void link(LinkRecord& record, uint8_t* from, const uint8_t* fromInstruction, uint8_t* to) { return ARMv7Assembler::link(record, from, fromInstruction, to); } struct ArmAddress { enum AddressType { HasOffset, HasIndex, } type; RegisterID base; union { int32_t offset; struct { RegisterID index; Scale scale; }; } u; explicit ArmAddress(RegisterID base, int32_t offset = 0) : type(HasOffset) , base(base) { u.offset = offset; } explicit ArmAddress(RegisterID base, RegisterID index, Scale scale = TimesOne) : type(HasIndex) , base(base) { u.index = index; u.scale = scale; } }; public: static const Scale ScalePtr = TimesFour; enum RelationalCondition { Equal = ARMv7Assembler::ConditionEQ, NotEqual = ARMv7Assembler::ConditionNE, Above = ARMv7Assembler::ConditionHI, AboveOrEqual = ARMv7Assembler::ConditionHS, Below = ARMv7Assembler::ConditionLO, BelowOrEqual = ARMv7Assembler::ConditionLS, GreaterThan = ARMv7Assembler::ConditionGT, GreaterThanOrEqual = ARMv7Assembler::ConditionGE, LessThan = ARMv7Assembler::ConditionLT, LessThanOrEqual = ARMv7Assembler::ConditionLE }; enum ResultCondition { Overflow = ARMv7Assembler::ConditionVS, Signed = ARMv7Assembler::ConditionMI, PositiveOrZero = ARMv7Assembler::ConditionPL, Zero = ARMv7Assembler::ConditionEQ, NonZero = ARMv7Assembler::ConditionNE }; enum DoubleCondition { // These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN. DoubleEqual = ARMv7Assembler::ConditionEQ, DoubleNotEqual = ARMv7Assembler::ConditionVC, // Not the right flag! check for this & handle differently. DoubleGreaterThan = ARMv7Assembler::ConditionGT, DoubleGreaterThanOrEqual = ARMv7Assembler::ConditionGE, DoubleLessThan = ARMv7Assembler::ConditionLO, DoubleLessThanOrEqual = ARMv7Assembler::ConditionLS, // If either operand is NaN, these conditions always evaluate to true. DoubleEqualOrUnordered = ARMv7Assembler::ConditionVS, // Not the right flag! check for this & handle differently. DoubleNotEqualOrUnordered = ARMv7Assembler::ConditionNE, DoubleGreaterThanOrUnordered = ARMv7Assembler::ConditionHI, DoubleGreaterThanOrEqualOrUnordered = ARMv7Assembler::ConditionHS, DoubleLessThanOrUnordered = ARMv7Assembler::ConditionLT, DoubleLessThanOrEqualOrUnordered = ARMv7Assembler::ConditionLE, }; static const RegisterID stackPointerRegister = ARMRegisters::sp; static const RegisterID framePointerRegister = ARMRegisters::fp; static const RegisterID linkRegister = ARMRegisters::lr; // Integer arithmetic operations: // // Operations are typically two operand - operation(source, srcDst) // For many operations the source may be an TrustedImm32, the srcDst operand // may often be a memory location (explictly described using an Address // object). void add32(RegisterID src, RegisterID dest) { m_assembler.add(dest, dest, src); } void add32(RegisterID left, RegisterID right, RegisterID dest) { m_assembler.add(dest, left, right); } void add32(TrustedImm32 imm, RegisterID dest) { add32(imm, dest, dest); } void add32(AbsoluteAddress src, RegisterID dest) { load32(src.m_ptr, dataTempRegister); add32(dataTempRegister, dest); } void add32(TrustedImm32 imm, RegisterID src, RegisterID dest) { ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value); // For adds with stack pointer destination, moving the src first to sp is // needed to avoid unpredictable instruction if (dest == ARMRegisters::sp && src != dest) { move(src, ARMRegisters::sp); src = ARMRegisters::sp; } if (armImm.isValid()) m_assembler.add(dest, src, armImm); else { move(imm, dataTempRegister); m_assembler.add(dest, src, dataTempRegister); } } void add32(TrustedImm32 imm, Address address) { load32(address, dataTempRegister); ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.add(dataTempRegister, dataTempRegister, armImm); else { // Hrrrm, since dataTempRegister holds the data loaded, // use addressTempRegister to hold the immediate. move(imm, addressTempRegister); m_assembler.add(dataTempRegister, dataTempRegister, addressTempRegister); } store32(dataTempRegister, address); } void add32(Address src, RegisterID dest) { load32(src, dataTempRegister); add32(dataTempRegister, dest); } void add32(TrustedImm32 imm, AbsoluteAddress address) { load32(address.m_ptr, dataTempRegister); ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.add(dataTempRegister, dataTempRegister, armImm); else { // Hrrrm, since dataTempRegister holds the data loaded, // use addressTempRegister to hold the immediate. move(imm, addressTempRegister); m_assembler.add(dataTempRegister, dataTempRegister, addressTempRegister); } store32(dataTempRegister, address.m_ptr); } void addPtrNoFlags(TrustedImm32 imm, RegisterID srcDest) { add32(imm, srcDest); } void add64(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), addressTempRegister); m_assembler.ldr(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt12(0)); ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.add_S(dataTempRegister, dataTempRegister, armImm); else { move(imm, addressTempRegister); m_assembler.add_S(dataTempRegister, dataTempRegister, addressTempRegister); move(TrustedImmPtr(address.m_ptr), addressTempRegister); } m_assembler.str(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt12(0)); m_assembler.ldr(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt12(4)); m_assembler.adc(dataTempRegister, dataTempRegister, ARMThumbImmediate::makeEncodedImm(imm.m_value >> 31)); m_assembler.str(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt12(4)); } void and32(RegisterID op1, RegisterID op2, RegisterID dest) { m_assembler.ARM_and(dest, op1, op2); } void and32(TrustedImm32 imm, RegisterID src, RegisterID dest) { ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.ARM_and(dest, src, armImm); else { move(imm, dataTempRegister); m_assembler.ARM_and(dest, src, dataTempRegister); } } void and32(RegisterID src, RegisterID dest) { and32(dest, src, dest); } void and32(TrustedImm32 imm, RegisterID dest) { and32(imm, dest, dest); } void and32(Address src, RegisterID dest) { load32(src, dataTempRegister); and32(dataTempRegister, dest); } void countLeadingZeros32(RegisterID src, RegisterID dest) { m_assembler.clz(dest, src); } void lshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest) { // Clamp the shift to the range 0..31 ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(0x1f); ASSERT(armImm.isValid()); m_assembler.ARM_and(dataTempRegister, shiftAmount, armImm); m_assembler.lsl(dest, src, dataTempRegister); } void lshift32(RegisterID src, TrustedImm32 imm, RegisterID dest) { m_assembler.lsl(dest, src, imm.m_value & 0x1f); } void lshift32(RegisterID shiftAmount, RegisterID dest) { lshift32(dest, shiftAmount, dest); } void lshift32(TrustedImm32 imm, RegisterID dest) { lshift32(dest, imm, dest); } void mul32(RegisterID src, RegisterID dest) { m_assembler.smull(dest, dataTempRegister, dest, src); } void mul32(RegisterID left, RegisterID right, RegisterID dest) { m_assembler.smull(dest, dataTempRegister, left, right); } void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest) { move(imm, dataTempRegister); m_assembler.smull(dest, dataTempRegister, src, dataTempRegister); } void neg32(RegisterID srcDest) { m_assembler.neg(srcDest, srcDest); } void or32(RegisterID src, RegisterID dest) { m_assembler.orr(dest, dest, src); } void or32(RegisterID src, AbsoluteAddress dest) { move(TrustedImmPtr(dest.m_ptr), addressTempRegister); load32(addressTempRegister, dataTempRegister); or32(src, dataTempRegister); store32(dataTempRegister, addressTempRegister); } void or32(TrustedImm32 imm, AbsoluteAddress address) { ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value); if (armImm.isValid()) { move(TrustedImmPtr(address.m_ptr), addressTempRegister); load32(addressTempRegister, dataTempRegister); m_assembler.orr(dataTempRegister, dataTempRegister, armImm); store32(dataTempRegister, addressTempRegister); } else { move(TrustedImmPtr(address.m_ptr), addressTempRegister); load32(addressTempRegister, dataTempRegister); move(imm, addressTempRegister); m_assembler.orr(dataTempRegister, dataTempRegister, addressTempRegister); move(TrustedImmPtr(address.m_ptr), addressTempRegister); store32(dataTempRegister, addressTempRegister); } } void or32(TrustedImm32 imm, Address address) { load32(address, dataTempRegister); or32(imm, dataTempRegister, dataTempRegister); store32(dataTempRegister, address); } void or32(TrustedImm32 imm, RegisterID dest) { or32(imm, dest, dest); } void or32(RegisterID op1, RegisterID op2, RegisterID dest) { m_assembler.orr(dest, op1, op2); } void or32(TrustedImm32 imm, RegisterID src, RegisterID dest) { ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.orr(dest, src, armImm); else { ASSERT(src != dataTempRegister); move(imm, dataTempRegister); m_assembler.orr(dest, src, dataTempRegister); } } void rshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest) { // Clamp the shift to the range 0..31 ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(0x1f); ASSERT(armImm.isValid()); m_assembler.ARM_and(dataTempRegister, shiftAmount, armImm); m_assembler.asr(dest, src, dataTempRegister); } void rshift32(RegisterID src, TrustedImm32 imm, RegisterID dest) { if (!imm.m_value) move(src, dest); else m_assembler.asr(dest, src, imm.m_value & 0x1f); } void rshift32(RegisterID shiftAmount, RegisterID dest) { rshift32(dest, shiftAmount, dest); } void rshift32(TrustedImm32 imm, RegisterID dest) { rshift32(dest, imm, dest); } void urshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest) { // Clamp the shift to the range 0..31 ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(0x1f); ASSERT(armImm.isValid()); m_assembler.ARM_and(dataTempRegister, shiftAmount, armImm); m_assembler.lsr(dest, src, dataTempRegister); } void urshift32(RegisterID src, TrustedImm32 imm, RegisterID dest) { if (!imm.m_value) move(src, dest); else m_assembler.lsr(dest, src, imm.m_value & 0x1f); } void urshift32(RegisterID shiftAmount, RegisterID dest) { urshift32(dest, shiftAmount, dest); } void urshift32(TrustedImm32 imm, RegisterID dest) { urshift32(dest, imm, dest); } void sub32(RegisterID src, RegisterID dest) { m_assembler.sub(dest, dest, src); } void sub32(TrustedImm32 imm, RegisterID dest) { ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.sub(dest, dest, armImm); else { move(imm, dataTempRegister); m_assembler.sub(dest, dest, dataTempRegister); } } void sub32(TrustedImm32 imm, Address address) { load32(address, dataTempRegister); ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.sub(dataTempRegister, dataTempRegister, armImm); else { // Hrrrm, since dataTempRegister holds the data loaded, // use addressTempRegister to hold the immediate. move(imm, addressTempRegister); m_assembler.sub(dataTempRegister, dataTempRegister, addressTempRegister); } store32(dataTempRegister, address); } void sub32(Address src, RegisterID dest) { load32(src, dataTempRegister); sub32(dataTempRegister, dest); } void sub32(TrustedImm32 imm, AbsoluteAddress address) { load32(address.m_ptr, dataTempRegister); ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.sub(dataTempRegister, dataTempRegister, armImm); else { // Hrrrm, since dataTempRegister holds the data loaded, // use addressTempRegister to hold the immediate. move(imm, addressTempRegister); m_assembler.sub(dataTempRegister, dataTempRegister, addressTempRegister); } store32(dataTempRegister, address.m_ptr); } void xor32(RegisterID op1, RegisterID op2, RegisterID dest) { m_assembler.eor(dest, op1, op2); } void xor32(TrustedImm32 imm, RegisterID src, RegisterID dest) { if (imm.m_value == -1) { m_assembler.mvn(dest, src); return; } ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.eor(dest, src, armImm); else { move(imm, dataTempRegister); m_assembler.eor(dest, src, dataTempRegister); } } void xor32(RegisterID src, RegisterID dest) { xor32(dest, src, dest); } void xor32(TrustedImm32 imm, RegisterID dest) { if (imm.m_value == -1) m_assembler.mvn(dest, dest); else xor32(imm, dest, dest); } // Memory access operations: // // Loads are of the form load(address, destination) and stores of the form // store(source, address). The source for a store may be an TrustedImm32. Address // operand objects to loads and store will be implicitly constructed if a // register is passed. private: void load32(ArmAddress address, RegisterID dest) { if (address.type == ArmAddress::HasIndex) m_assembler.ldr(dest, address.base, address.u.index, address.u.scale); else if (address.u.offset >= 0) { ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset); ASSERT(armImm.isValid()); m_assembler.ldr(dest, address.base, armImm); } else { ASSERT(address.u.offset >= -255); m_assembler.ldr(dest, address.base, address.u.offset, true, false); } } void load16(ArmAddress address, RegisterID dest) { if (address.type == ArmAddress::HasIndex) m_assembler.ldrh(dest, address.base, address.u.index, address.u.scale); else if (address.u.offset >= 0) { ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset); ASSERT(armImm.isValid()); m_assembler.ldrh(dest, address.base, armImm); } else { ASSERT(address.u.offset >= -255); m_assembler.ldrh(dest, address.base, address.u.offset, true, false); } } void load16SignedExtendTo32(ArmAddress address, RegisterID dest) { ASSERT(address.type == ArmAddress::HasIndex); m_assembler.ldrsh(dest, address.base, address.u.index, address.u.scale); } void load8(ArmAddress address, RegisterID dest) { if (address.type == ArmAddress::HasIndex) m_assembler.ldrb(dest, address.base, address.u.index, address.u.scale); else if (address.u.offset >= 0) { ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset); ASSERT(armImm.isValid()); m_assembler.ldrb(dest, address.base, armImm); } else { ASSERT(address.u.offset >= -255); m_assembler.ldrb(dest, address.base, address.u.offset, true, false); } } void load8SignedExtendTo32(ArmAddress address, RegisterID dest) { ASSERT(address.type == ArmAddress::HasIndex); m_assembler.ldrsb(dest, address.base, address.u.index, address.u.scale); } protected: void store32(RegisterID src, ArmAddress address) { if (address.type == ArmAddress::HasIndex) m_assembler.str(src, address.base, address.u.index, address.u.scale); else if (address.u.offset >= 0) { ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset); ASSERT(armImm.isValid()); m_assembler.str(src, address.base, armImm); } else { ASSERT(address.u.offset >= -255); m_assembler.str(src, address.base, address.u.offset, true, false); } } private: void store8(RegisterID src, ArmAddress address) { if (address.type == ArmAddress::HasIndex) m_assembler.strb(src, address.base, address.u.index, address.u.scale); else if (address.u.offset >= 0) { ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset); ASSERT(armImm.isValid()); m_assembler.strb(src, address.base, armImm); } else { ASSERT(address.u.offset >= -255); m_assembler.strb(src, address.base, address.u.offset, true, false); } } void store16(RegisterID src, ArmAddress address) { if (address.type == ArmAddress::HasIndex) m_assembler.strh(src, address.base, address.u.index, address.u.scale); else if (address.u.offset >= 0) { ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset); ASSERT(armImm.isValid()); m_assembler.strh(src, address.base, armImm); } else { ASSERT(address.u.offset >= -255); m_assembler.strh(src, address.base, address.u.offset, true, false); } } public: void load32(ImplicitAddress address, RegisterID dest) { load32(setupArmAddress(address), dest); } void load32(BaseIndex address, RegisterID dest) { load32(setupArmAddress(address), dest); } void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest) { load32(setupArmAddress(address), dest); } void load16Unaligned(BaseIndex address, RegisterID dest) { load16(setupArmAddress(address), dest); } void load32(const void* address, RegisterID dest) { move(TrustedImmPtr(address), addressTempRegister); m_assembler.ldr(dest, addressTempRegister, ARMThumbImmediate::makeUInt16(0)); } void abortWithReason(AbortReason reason) { move(TrustedImm32(reason), dataTempRegister); breakpoint(); } void abortWithReason(AbortReason reason, intptr_t misc) { move(TrustedImm32(misc), addressTempRegister); abortWithReason(reason); } ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest) { ConvertibleLoadLabel result(this); ASSERT(address.offset >= 0 && address.offset <= 255); m_assembler.ldrWide8BitImmediate(dest, address.base, address.offset); return result; } void load8(ImplicitAddress address, RegisterID dest) { load8(setupArmAddress(address), dest); } void load8SignedExtendTo32(ImplicitAddress, RegisterID) { UNREACHABLE_FOR_PLATFORM(); } void load8(BaseIndex address, RegisterID dest) { load8(setupArmAddress(address), dest); } void load8SignedExtendTo32(BaseIndex address, RegisterID dest) { load8SignedExtendTo32(setupArmAddress(address), dest); } void load8(const void* address, RegisterID dest) { move(TrustedImmPtr(address), dest); load8(dest, dest); } DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest) { DataLabel32 label = moveWithPatch(TrustedImm32(address.offset), dataTempRegister); load32(ArmAddress(address.base, dataTempRegister), dest); return label; } DataLabelCompact load32WithCompactAddressOffsetPatch(Address address, RegisterID dest) { padBeforePatch(); RegisterID base = address.base; DataLabelCompact label(this); ASSERT(isCompactPtrAlignedAddressOffset(address.offset)); m_assembler.ldr(dest, base, address.offset, true, false); return label; } void load16(BaseIndex address, RegisterID dest) { m_assembler.ldrh(dest, makeBaseIndexBase(address), address.index, address.scale); } void load16SignedExtendTo32(BaseIndex address, RegisterID dest) { load16SignedExtendTo32(setupArmAddress(address), dest); } void load16(ImplicitAddress address, RegisterID dest) { ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.offset); if (armImm.isValid()) m_assembler.ldrh(dest, address.base, armImm); else { move(TrustedImm32(address.offset), dataTempRegister); m_assembler.ldrh(dest, address.base, dataTempRegister); } } void load16SignedExtendTo32(ImplicitAddress, RegisterID) { UNREACHABLE_FOR_PLATFORM(); } DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address) { DataLabel32 label = moveWithPatch(TrustedImm32(address.offset), dataTempRegister); store32(src, ArmAddress(address.base, dataTempRegister)); return label; } void store32(RegisterID src, ImplicitAddress address) { store32(src, setupArmAddress(address)); } void store32(RegisterID src, BaseIndex address) { store32(src, setupArmAddress(address)); } void store32(TrustedImm32 imm, ImplicitAddress address) { move(imm, dataTempRegister); store32(dataTempRegister, setupArmAddress(address)); } void store32(TrustedImm32 imm, BaseIndex address) { move(imm, dataTempRegister); store32(dataTempRegister, setupArmAddress(address)); } void store32(RegisterID src, const void* address) { move(TrustedImmPtr(address), addressTempRegister); m_assembler.str(src, addressTempRegister, ARMThumbImmediate::makeUInt16(0)); } void store32(TrustedImm32 imm, const void* address) { move(imm, dataTempRegister); store32(dataTempRegister, address); } void store8(RegisterID src, Address address) { store8(src, setupArmAddress(address)); } void store8(RegisterID src, BaseIndex address) { store8(src, setupArmAddress(address)); } void store8(RegisterID src, void* address) { move(TrustedImmPtr(address), addressTempRegister); store8(src, ArmAddress(addressTempRegister, 0)); } void store8(TrustedImm32 imm, void* address) { move(imm, dataTempRegister); store8(dataTempRegister, address); } void store8(TrustedImm32 imm, Address address) { move(imm, dataTempRegister); store8(dataTempRegister, address); } void store16(RegisterID src, BaseIndex address) { store16(src, setupArmAddress(address)); } // Possibly clobbers src, but not on this architecture. void moveDoubleToInts(FPRegisterID src, RegisterID dest1, RegisterID dest2) { m_assembler.vmov(dest1, dest2, src); } void moveIntsToDouble(RegisterID src1, RegisterID src2, FPRegisterID dest, FPRegisterID scratch) { UNUSED_PARAM(scratch); m_assembler.vmov(dest, src1, src2); } static bool shouldBlindForSpecificArch(uint32_t value) { ARMThumbImmediate immediate = ARMThumbImmediate::makeEncodedImm(value); // Couldn't be encoded as an immediate, so assume it's untrusted. if (!immediate.isValid()) return true; // If we can encode the immediate, we have less than 16 attacker // controlled bits. if (immediate.isEncodedImm()) return false; // Don't let any more than 12 bits of an instruction word // be controlled by an attacker. return !immediate.isUInt12(); } // Floating-point operations: static bool supportsFloatingPoint() { return true; } static bool supportsFloatingPointTruncate() { return true; } static bool supportsFloatingPointSqrt() { return true; } static bool supportsFloatingPointAbs() { return true; } static bool supportsFloatingPointRounding() { return false; } void loadDouble(ImplicitAddress address, FPRegisterID dest) { RegisterID base = address.base; int32_t offset = address.offset; // Arm vfp addresses can be offset by a 9-bit ones-comp immediate, left shifted by 2. if ((offset & 3) || (offset > (255 * 4)) || (offset < -(255 * 4))) { add32(TrustedImm32(offset), base, addressTempRegister); base = addressTempRegister; offset = 0; } m_assembler.vldr(dest, base, offset); } void loadFloat(ImplicitAddress address, FPRegisterID dest) { RegisterID base = address.base; int32_t offset = address.offset; // Arm vfp addresses can be offset by a 9-bit ones-comp immediate, left shifted by 2. if ((offset & 3) || (offset > (255 * 4)) || (offset < -(255 * 4))) { add32(TrustedImm32(offset), base, addressTempRegister); base = addressTempRegister; offset = 0; } m_assembler.flds(ARMRegisters::asSingle(dest), base, offset); } void loadDouble(BaseIndex address, FPRegisterID dest) { move(address.index, addressTempRegister); lshift32(TrustedImm32(address.scale), addressTempRegister); add32(address.base, addressTempRegister); loadDouble(Address(addressTempRegister, address.offset), dest); } void loadFloat(BaseIndex address, FPRegisterID dest) { move(address.index, addressTempRegister); lshift32(TrustedImm32(address.scale), addressTempRegister); add32(address.base, addressTempRegister); loadFloat(Address(addressTempRegister, address.offset), dest); } void moveDouble(FPRegisterID src, FPRegisterID dest) { if (src != dest) m_assembler.vmov(dest, src); } void moveZeroToDouble(FPRegisterID reg) { static double zeroConstant = 0.; loadDouble(TrustedImmPtr(&zeroConstant), reg); } void loadDouble(TrustedImmPtr address, FPRegisterID dest) { move(address, addressTempRegister); m_assembler.vldr(dest, addressTempRegister, 0); } void storeDouble(FPRegisterID src, ImplicitAddress address) { RegisterID base = address.base; int32_t offset = address.offset; // Arm vfp addresses can be offset by a 9-bit ones-comp immediate, left shifted by 2. if ((offset & 3) || (offset > (255 * 4)) || (offset < -(255 * 4))) { add32(TrustedImm32(offset), base, addressTempRegister); base = addressTempRegister; offset = 0; } m_assembler.vstr(src, base, offset); } void storeFloat(FPRegisterID src, ImplicitAddress address) { RegisterID base = address.base; int32_t offset = address.offset; // Arm vfp addresses can be offset by a 9-bit ones-comp immediate, left shifted by 2. if ((offset & 3) || (offset > (255 * 4)) || (offset < -(255 * 4))) { add32(TrustedImm32(offset), base, addressTempRegister); base = addressTempRegister; offset = 0; } m_assembler.fsts(ARMRegisters::asSingle(src), base, offset); } void storeDouble(FPRegisterID src, TrustedImmPtr address) { move(address, addressTempRegister); storeDouble(src, addressTempRegister); } void storeDouble(FPRegisterID src, BaseIndex address) { move(address.index, addressTempRegister); lshift32(TrustedImm32(address.scale), addressTempRegister); add32(address.base, addressTempRegister); storeDouble(src, Address(addressTempRegister, address.offset)); } void storeFloat(FPRegisterID src, BaseIndex address) { move(address.index, addressTempRegister); lshift32(TrustedImm32(address.scale), addressTempRegister); add32(address.base, addressTempRegister); storeFloat(src, Address(addressTempRegister, address.offset)); } void addDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vadd(dest, dest, src); } void addDouble(Address src, FPRegisterID dest) { loadDouble(src, fpTempRegister); addDouble(fpTempRegister, dest); } void addDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest) { m_assembler.vadd(dest, op1, op2); } void addDouble(AbsoluteAddress address, FPRegisterID dest) { loadDouble(TrustedImmPtr(address.m_ptr), fpTempRegister); m_assembler.vadd(dest, dest, fpTempRegister); } void divDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vdiv(dest, dest, src); } void divDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest) { m_assembler.vdiv(dest, op1, op2); } void subDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vsub(dest, dest, src); } void subDouble(Address src, FPRegisterID dest) { loadDouble(src, fpTempRegister); subDouble(fpTempRegister, dest); } void subDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest) { m_assembler.vsub(dest, op1, op2); } void mulDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vmul(dest, dest, src); } void mulDouble(Address src, FPRegisterID dest) { loadDouble(src, fpTempRegister); mulDouble(fpTempRegister, dest); } void mulDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest) { m_assembler.vmul(dest, op1, op2); } void sqrtDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vsqrt(dest, src); } void absDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vabs(dest, src); } void negateDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vneg(dest, src); } NO_RETURN_DUE_TO_CRASH void ceilDouble(FPRegisterID, FPRegisterID) { ASSERT(!supportsFloatingPointRounding()); CRASH(); } NO_RETURN_DUE_TO_CRASH void floorDouble(FPRegisterID, FPRegisterID) { ASSERT(!supportsFloatingPointRounding()); CRASH(); } NO_RETURN_DUE_TO_CRASH void roundTowardZeroDouble(FPRegisterID, FPRegisterID) { ASSERT(!supportsFloatingPointRounding()); CRASH(); } void convertInt32ToDouble(RegisterID src, FPRegisterID dest) { m_assembler.vmov(fpTempRegister, src, src); m_assembler.vcvt_signedToFloatingPoint(dest, fpTempRegisterAsSingle()); } void convertInt32ToDouble(Address address, FPRegisterID dest) { // Fixme: load directly into the fpr! load32(address, dataTempRegister); m_assembler.vmov(fpTempRegister, dataTempRegister, dataTempRegister); m_assembler.vcvt_signedToFloatingPoint(dest, fpTempRegisterAsSingle()); } void convertInt32ToDouble(AbsoluteAddress address, FPRegisterID dest) { // Fixme: load directly into the fpr! load32(address.m_ptr, dataTempRegister); m_assembler.vmov(fpTempRegister, dataTempRegister, dataTempRegister); m_assembler.vcvt_signedToFloatingPoint(dest, fpTempRegisterAsSingle()); } void convertFloatToDouble(FPRegisterID src, FPRegisterID dst) { m_assembler.vcvtds(dst, ARMRegisters::asSingle(src)); } void convertDoubleToFloat(FPRegisterID src, FPRegisterID dst) { m_assembler.vcvtsd(ARMRegisters::asSingle(dst), src); } Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right) { m_assembler.vcmp(left, right); m_assembler.vmrs(); if (cond == DoubleNotEqual) { // ConditionNE jumps if NotEqual *or* unordered - force the unordered cases not to jump. Jump unordered = makeBranch(ARMv7Assembler::ConditionVS); Jump result = makeBranch(ARMv7Assembler::ConditionNE); unordered.link(this); return result; } if (cond == DoubleEqualOrUnordered) { Jump unordered = makeBranch(ARMv7Assembler::ConditionVS); Jump notEqual = makeBranch(ARMv7Assembler::ConditionNE); unordered.link(this); // We get here if either unordered or equal. Jump result = jump(); notEqual.link(this); return result; } return makeBranch(cond); } enum BranchTruncateType { BranchIfTruncateFailed, BranchIfTruncateSuccessful }; Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed) { // Convert into dest. m_assembler.vcvt_floatingPointToSigned(fpTempRegisterAsSingle(), src); m_assembler.vmov(dest, fpTempRegisterAsSingle()); // Calculate 2x dest. If the value potentially underflowed, it will have // clamped to 0x80000000, so 2x dest is zero in this case. In the case of // overflow the result will be equal to -2. Jump underflow = branchAdd32(Zero, dest, dest, dataTempRegister); Jump noOverflow = branch32(NotEqual, dataTempRegister, TrustedImm32(-2)); // For BranchIfTruncateSuccessful, we branch if 'noOverflow' jumps. underflow.link(this); if (branchType == BranchIfTruncateSuccessful) return noOverflow; // We'll reach the current point in the code on failure, so plant a // jump here & link the success case. Jump failure = jump(); noOverflow.link(this); return failure; } // Result is undefined if the value is outside of the integer range. void truncateDoubleToInt32(FPRegisterID src, RegisterID dest) { m_assembler.vcvt_floatingPointToSigned(fpTempRegisterAsSingle(), src); m_assembler.vmov(dest, fpTempRegisterAsSingle()); } void truncateDoubleToUint32(FPRegisterID src, RegisterID dest) { m_assembler.vcvt_floatingPointToUnsigned(fpTempRegisterAsSingle(), src); m_assembler.vmov(dest, fpTempRegisterAsSingle()); } // Convert 'src' to an integer, and places the resulting 'dest'. // If the result is not representable as a 32 bit value, branch. // May also branch for some values that are representable in 32 bits // (specifically, in this case, 0). void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID, bool negZeroCheck = true) { m_assembler.vcvt_floatingPointToSigned(fpTempRegisterAsSingle(), src); m_assembler.vmov(dest, fpTempRegisterAsSingle()); // Convert the integer result back to float & compare to the original value - if not equal or unordered (NaN) then jump. m_assembler.vcvt_signedToFloatingPoint(fpTempRegister, fpTempRegisterAsSingle()); failureCases.append(branchDouble(DoubleNotEqualOrUnordered, src, fpTempRegister)); // If the result is zero, it might have been -0.0, and the double comparison won't catch this! if (negZeroCheck) failureCases.append(branchTest32(Zero, dest)); } Jump branchDoubleNonZero(FPRegisterID reg, FPRegisterID) { m_assembler.vcmpz(reg); m_assembler.vmrs(); Jump unordered = makeBranch(ARMv7Assembler::ConditionVS); Jump result = makeBranch(ARMv7Assembler::ConditionNE); unordered.link(this); return result; } Jump branchDoubleZeroOrNaN(FPRegisterID reg, FPRegisterID) { m_assembler.vcmpz(reg); m_assembler.vmrs(); Jump unordered = makeBranch(ARMv7Assembler::ConditionVS); Jump notEqual = makeBranch(ARMv7Assembler::ConditionNE); unordered.link(this); // We get here if either unordered or equal. Jump result = jump(); notEqual.link(this); return result; } // Stack manipulation operations: // // The ABI is assumed to provide a stack abstraction to memory, // containing machine word sized units of data. Push and pop // operations add and remove a single register sized unit of data // to or from the stack. Peek and poke operations read or write // values on the stack, without moving the current stack position. void pop(RegisterID dest) { m_assembler.pop(dest); } void push(RegisterID src) { m_assembler.push(src); } void push(Address address) { load32(address, dataTempRegister); push(dataTempRegister); } void push(TrustedImm32 imm) { move(imm, dataTempRegister); push(dataTempRegister); } void popPair(RegisterID dest1, RegisterID dest2) { m_assembler.pop(1 << dest1 | 1 << dest2); } void pushPair(RegisterID src1, RegisterID src2) { m_assembler.push(1 << src1 | 1 << src2); } // Register move operations: // // Move values in registers. void move(TrustedImm32 imm, RegisterID dest) { uint32_t value = imm.m_value; ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(value); if (armImm.isValid()) m_assembler.mov(dest, armImm); else if ((armImm = ARMThumbImmediate::makeEncodedImm(~value)).isValid()) m_assembler.mvn(dest, armImm); else { m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(value)); if (value & 0xffff0000) m_assembler.movt(dest, ARMThumbImmediate::makeUInt16(value >> 16)); } } void move(RegisterID src, RegisterID dest) { if (src != dest) m_assembler.mov(dest, src); } void move(TrustedImmPtr imm, RegisterID dest) { move(TrustedImm32(imm), dest); } void swap(RegisterID reg1, RegisterID reg2) { move(reg1, dataTempRegister); move(reg2, reg1); move(dataTempRegister, reg2); } void signExtend32ToPtr(RegisterID src, RegisterID dest) { move(src, dest); } void zeroExtend32ToPtr(RegisterID src, RegisterID dest) { move(src, dest); } // Invert a relational condition, e.g. == becomes !=, < becomes >=, etc. static RelationalCondition invert(RelationalCondition cond) { return static_cast(cond ^ 1); } void nop() { m_assembler.nop(); } void memoryFence() { m_assembler.dmbSY(); } static void replaceWithJump(CodeLocationLabel instructionStart, CodeLocationLabel destination) { ARMv7Assembler::replaceWithJump(instructionStart.dataLocation(), destination.dataLocation()); } static ptrdiff_t maxJumpReplacementSize() { return ARMv7Assembler::maxJumpReplacementSize(); } // Forwards / external control flow operations: // // This set of jump and conditional branch operations return a Jump // object which may linked at a later point, allow forwards jump, // or jumps that will require external linkage (after the code has been // relocated). // // For branches, signed <, >, <= and >= are denoted as l, g, le, and ge // respecitvely, for unsigned comparisons the names b, a, be, and ae are // used (representing the names 'below' and 'above'). // // Operands to the comparision are provided in the expected order, e.g. // jle32(reg1, TrustedImm32(5)) will branch if the value held in reg1, when // treated as a signed 32bit value, is less than or equal to 5. // // jz and jnz test whether the first operand is equal to zero, and take // an optional second operand of a mask under which to perform the test. private: // Should we be using TEQ for equal/not-equal? void compare32AndSetFlags(RegisterID left, TrustedImm32 right) { int32_t imm = right.m_value; ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm); if (armImm.isValid()) m_assembler.cmp(left, armImm); else if ((armImm = ARMThumbImmediate::makeEncodedImm(-imm)).isValid()) m_assembler.cmn(left, armImm); else { move(TrustedImm32(imm), dataTempRegister); m_assembler.cmp(left, dataTempRegister); } } public: void test32(RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) { int32_t imm = mask.m_value; if (imm == -1) m_assembler.tst(reg, reg); else { ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm); if (armImm.isValid()) { if (reg == ARMRegisters::sp) { move(reg, addressTempRegister); m_assembler.tst(addressTempRegister, armImm); } else m_assembler.tst(reg, armImm); } else { move(mask, dataTempRegister); if (reg == ARMRegisters::sp) { move(reg, addressTempRegister); m_assembler.tst(addressTempRegister, dataTempRegister); } else m_assembler.tst(reg, dataTempRegister); } } } Jump branch(ResultCondition cond) { return Jump(makeBranch(cond)); } Jump branch32(RelationalCondition cond, RegisterID left, RegisterID right) { m_assembler.cmp(left, right); return Jump(makeBranch(cond)); } Jump branch32(RelationalCondition cond, RegisterID left, TrustedImm32 right) { compare32AndSetFlags(left, right); return Jump(makeBranch(cond)); } Jump branch32(RelationalCondition cond, RegisterID left, Address right) { load32(right, dataTempRegister); return branch32(cond, left, dataTempRegister); } Jump branch32(RelationalCondition cond, Address left, RegisterID right) { load32(left, dataTempRegister); return branch32(cond, dataTempRegister, right); } Jump branch32(RelationalCondition cond, Address left, TrustedImm32 right) { // use addressTempRegister incase the branch32 we call uses dataTempRegister. :-/ load32(left, addressTempRegister); return branch32(cond, addressTempRegister, right); } Jump branch32(RelationalCondition cond, BaseIndex left, TrustedImm32 right) { // use addressTempRegister incase the branch32 we call uses dataTempRegister. :-/ load32(left, addressTempRegister); return branch32(cond, addressTempRegister, right); } Jump branch32WithUnalignedHalfWords(RelationalCondition cond, BaseIndex left, TrustedImm32 right) { // use addressTempRegister incase the branch32 we call uses dataTempRegister. :-/ load32WithUnalignedHalfWords(left, addressTempRegister); return branch32(cond, addressTempRegister, right); } Jump branch32(RelationalCondition cond, AbsoluteAddress left, RegisterID right) { load32(left.m_ptr, dataTempRegister); return branch32(cond, dataTempRegister, right); } Jump branch32(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right) { // use addressTempRegister incase the branch32 we call uses dataTempRegister. :-/ load32(left.m_ptr, addressTempRegister); return branch32(cond, addressTempRegister, right); } Jump branchPtr(RelationalCondition cond, BaseIndex left, RegisterID right) { load32(left, dataTempRegister); return branch32(cond, dataTempRegister, right); } Jump branch8(RelationalCondition cond, RegisterID left, TrustedImm32 right) { compare32AndSetFlags(left, right); return Jump(makeBranch(cond)); } Jump branch8(RelationalCondition cond, Address left, TrustedImm32 right) { ASSERT(!(0xffffff00 & right.m_value)); // use addressTempRegister incase the branch8 we call uses dataTempRegister. :-/ load8(left, addressTempRegister); return branch8(cond, addressTempRegister, right); } Jump branch8(RelationalCondition cond, BaseIndex left, TrustedImm32 right) { ASSERT(!(0xffffff00 & right.m_value)); // use addressTempRegister incase the branch32 we call uses dataTempRegister. :-/ load8(left, addressTempRegister); return branch32(cond, addressTempRegister, right); } Jump branch8(RelationalCondition cond, AbsoluteAddress address, TrustedImm32 right) { // Use addressTempRegister instead of dataTempRegister, since branch32 uses dataTempRegister. move(TrustedImmPtr(address.m_ptr), addressTempRegister); load8(Address(addressTempRegister), addressTempRegister); return branch32(cond, addressTempRegister, right); } Jump branchTest32(ResultCondition cond, RegisterID reg, RegisterID mask) { m_assembler.tst(reg, mask); return Jump(makeBranch(cond)); } Jump branchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) { test32(reg, mask); return Jump(makeBranch(cond)); } Jump branchTest32(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) { // use addressTempRegister incase the branchTest32 we call uses dataTempRegister. :-/ load32(address, addressTempRegister); return branchTest32(cond, addressTempRegister, mask); } Jump branchTest32(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) { // use addressTempRegister incase the branchTest32 we call uses dataTempRegister. :-/ load32(address, addressTempRegister); return branchTest32(cond, addressTempRegister, mask); } Jump branchTest8(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) { // use addressTempRegister incase the branchTest8 we call uses dataTempRegister. :-/ load8(address, addressTempRegister); return branchTest32(cond, addressTempRegister, mask); } Jump branchTest8(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) { // use addressTempRegister incase the branchTest8 we call uses dataTempRegister. :-/ load8(address, addressTempRegister); return branchTest32(cond, addressTempRegister, mask); } Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) { // use addressTempRegister incase the branchTest8 we call uses dataTempRegister. :-/ move(TrustedImmPtr(address.m_ptr), addressTempRegister); load8(Address(addressTempRegister), addressTempRegister); return branchTest32(cond, addressTempRegister, mask); } void jump(RegisterID target) { m_assembler.bx(target); } // Address is a memory location containing the address to jump to void jump(Address address) { load32(address, dataTempRegister); m_assembler.bx(dataTempRegister); } void jump(AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), dataTempRegister); load32(Address(dataTempRegister), dataTempRegister); m_assembler.bx(dataTempRegister); } // Arithmetic control flow operations: // // This set of conditional branch operations branch based // on the result of an arithmetic operation. The operation // is performed as normal, storing the result. // // * jz operations branch if the result is zero. // * jo operations branch if the (signed) arithmetic // operation caused an overflow to occur. Jump branchAdd32(ResultCondition cond, RegisterID op1, RegisterID op2, RegisterID dest) { m_assembler.add_S(dest, op1, op2); return Jump(makeBranch(cond)); } Jump branchAdd32(ResultCondition cond, RegisterID op1, TrustedImm32 imm, RegisterID dest) { ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.add_S(dest, op1, armImm); else { move(imm, dataTempRegister); m_assembler.add_S(dest, op1, dataTempRegister); } return Jump(makeBranch(cond)); } Jump branchAdd32(ResultCondition cond, RegisterID src, RegisterID dest) { return branchAdd32(cond, dest, src, dest); } Jump branchAdd32(ResultCondition cond, Address src, RegisterID dest) { load32(src, dataTempRegister); return branchAdd32(cond, dest, dataTempRegister, dest); } Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, RegisterID dest) { return branchAdd32(cond, dest, imm, dest); } Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, AbsoluteAddress dest) { // Move the high bits of the address into addressTempRegister, // and load the value into dataTempRegister. move(TrustedImmPtr(dest.m_ptr), addressTempRegister); m_assembler.ldr(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt16(0)); // Do the add. ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.add_S(dataTempRegister, dataTempRegister, armImm); else { // If the operand does not fit into an immediate then load it temporarily // into addressTempRegister; since we're overwriting addressTempRegister // we'll need to reload it with the high bits of the address afterwards. move(imm, addressTempRegister); m_assembler.add_S(dataTempRegister, dataTempRegister, addressTempRegister); move(TrustedImmPtr(dest.m_ptr), addressTempRegister); } // Store the result. m_assembler.str(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt16(0)); return Jump(makeBranch(cond)); } Jump branchMul32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest) { m_assembler.smull(dest, dataTempRegister, src1, src2); if (cond == Overflow) { m_assembler.asr(addressTempRegister, dest, 31); return branch32(NotEqual, addressTempRegister, dataTempRegister); } return branchTest32(cond, dest); } Jump branchMul32(ResultCondition cond, RegisterID src, RegisterID dest) { return branchMul32(cond, src, dest, dest); } Jump branchMul32(ResultCondition cond, RegisterID src, TrustedImm32 imm, RegisterID dest) { move(imm, dataTempRegister); return branchMul32(cond, dataTempRegister, src, dest); } Jump branchNeg32(ResultCondition cond, RegisterID srcDest) { ARMThumbImmediate zero = ARMThumbImmediate::makeUInt12(0); m_assembler.sub_S(srcDest, zero, srcDest); return Jump(makeBranch(cond)); } Jump branchOr32(ResultCondition cond, RegisterID src, RegisterID dest) { m_assembler.orr_S(dest, dest, src); return Jump(makeBranch(cond)); } Jump branchSub32(ResultCondition cond, RegisterID op1, RegisterID op2, RegisterID dest) { m_assembler.sub_S(dest, op1, op2); return Jump(makeBranch(cond)); } Jump branchSub32(ResultCondition cond, RegisterID op1, TrustedImm32 imm, RegisterID dest) { ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value); if (armImm.isValid()) m_assembler.sub_S(dest, op1, armImm); else { move(imm, dataTempRegister); m_assembler.sub_S(dest, op1, dataTempRegister); } return Jump(makeBranch(cond)); } Jump branchSub32(ResultCondition cond, RegisterID src, RegisterID dest) { return branchSub32(cond, dest, src, dest); } Jump branchSub32(ResultCondition cond, TrustedImm32 imm, RegisterID dest) { return branchSub32(cond, dest, imm, dest); } void relativeTableJump(RegisterID index, int scale) { ASSERT(scale >= 0 && scale <= 31); // dataTempRegister will point after the jump if index register contains zero move(ARMRegisters::pc, dataTempRegister); m_assembler.add(dataTempRegister, dataTempRegister, ARMThumbImmediate::makeEncodedImm(9)); ShiftTypeAndAmount shift(SRType_LSL, scale); m_assembler.add(dataTempRegister, dataTempRegister, index, shift); jump(dataTempRegister); } // Miscellaneous operations: void breakpoint(uint8_t imm = 0) { m_assembler.bkpt(imm); } ALWAYS_INLINE Call nearCall() { moveFixedWidthEncoding(TrustedImm32(0), dataTempRegister); return Call(m_assembler.blx(dataTempRegister), Call::LinkableNear); } ALWAYS_INLINE Call nearTailCall() { moveFixedWidthEncoding(TrustedImm32(0), dataTempRegister); return Call(m_assembler.bx(dataTempRegister), Call::LinkableNearTail); } ALWAYS_INLINE Call call() { moveFixedWidthEncoding(TrustedImm32(0), dataTempRegister); return Call(m_assembler.blx(dataTempRegister), Call::Linkable); } ALWAYS_INLINE Call call(RegisterID target) { return Call(m_assembler.blx(target), Call::None); } ALWAYS_INLINE Call call(Address address) { load32(address, dataTempRegister); return Call(m_assembler.blx(dataTempRegister), Call::None); } ALWAYS_INLINE void ret() { m_assembler.bx(linkRegister); } void compare32(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) { m_assembler.cmp(left, right); m_assembler.it(armV7Condition(cond), false); m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(1)); m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(0)); } void compare32(RelationalCondition cond, Address left, RegisterID right, RegisterID dest) { load32(left, dataTempRegister); compare32(cond, dataTempRegister, right, dest); } void compare8(RelationalCondition cond, Address left, TrustedImm32 right, RegisterID dest) { load8(left, addressTempRegister); compare32(cond, addressTempRegister, right, dest); } void compare32(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) { compare32AndSetFlags(left, right); m_assembler.it(armV7Condition(cond), false); m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(1)); m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(0)); } // FIXME: // The mask should be optional... paerhaps the argument order should be // dest-src, operations always have a dest? ... possibly not true, considering // asm ops like test, or pseudo ops like pop(). void test32(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest) { load32(address, dataTempRegister); test32(dataTempRegister, mask); m_assembler.it(armV7Condition(cond), false); m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(1)); m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(0)); } void test8(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest) { load8(address, dataTempRegister); test32(dataTempRegister, mask); m_assembler.it(armV7Condition(cond), false); m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(1)); m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(0)); } ALWAYS_INLINE DataLabel32 moveWithPatch(TrustedImm32 imm, RegisterID dst) { padBeforePatch(); moveFixedWidthEncoding(imm, dst); return DataLabel32(this); } ALWAYS_INLINE DataLabelPtr moveWithPatch(TrustedImmPtr imm, RegisterID dst) { padBeforePatch(); moveFixedWidthEncoding(TrustedImm32(imm), dst); return DataLabelPtr(this); } ALWAYS_INLINE Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { dataLabel = moveWithPatch(initialRightValue, dataTempRegister); return branch32(cond, left, dataTempRegister); } ALWAYS_INLINE Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { load32(left, addressTempRegister); dataLabel = moveWithPatch(initialRightValue, dataTempRegister); return branch32(cond, addressTempRegister, dataTempRegister); } ALWAYS_INLINE Jump branch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0)) { load32(left, addressTempRegister); dataLabel = moveWithPatch(initialRightValue, dataTempRegister); return branch32(cond, addressTempRegister, dataTempRegister); } PatchableJump patchableBranchPtr(RelationalCondition cond, Address left, TrustedImmPtr right = TrustedImmPtr(0)) { m_makeJumpPatchable = true; Jump result = branch32(cond, left, TrustedImm32(right)); m_makeJumpPatchable = false; return PatchableJump(result); } PatchableJump patchableBranchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) { m_makeJumpPatchable = true; Jump result = branchTest32(cond, reg, mask); m_makeJumpPatchable = false; return PatchableJump(result); } PatchableJump patchableBranch32(RelationalCondition cond, RegisterID reg, TrustedImm32 imm) { m_makeJumpPatchable = true; Jump result = branch32(cond, reg, imm); m_makeJumpPatchable = false; return PatchableJump(result); } PatchableJump patchableBranchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { m_makeJumpPatchable = true; Jump result = branchPtrWithPatch(cond, left, dataLabel, initialRightValue); m_makeJumpPatchable = false; return PatchableJump(result); } PatchableJump patchableBranch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0)) { m_makeJumpPatchable = true; Jump result = branch32WithPatch(cond, left, dataLabel, initialRightValue); m_makeJumpPatchable = false; return PatchableJump(result); } PatchableJump patchableJump() { padBeforePatch(); m_makeJumpPatchable = true; Jump result = jump(); m_makeJumpPatchable = false; return PatchableJump(result); } ALWAYS_INLINE DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address) { DataLabelPtr label = moveWithPatch(initialValue, dataTempRegister); store32(dataTempRegister, address); return label; } ALWAYS_INLINE DataLabelPtr storePtrWithPatch(ImplicitAddress address) { return storePtrWithPatch(TrustedImmPtr(0), address); } ALWAYS_INLINE Call tailRecursiveCall() { // Like a normal call, but don't link. moveFixedWidthEncoding(TrustedImm32(0), dataTempRegister); return Call(m_assembler.bx(dataTempRegister), Call::Linkable); } ALWAYS_INLINE Call makeTailRecursiveCall(Jump oldJump) { oldJump.link(this); return tailRecursiveCall(); } static FunctionPtr readCallTarget(CodeLocationCall call) { return FunctionPtr(reinterpret_cast(ARMv7Assembler::readCallTarget(call.dataLocation()))); } static bool canJumpReplacePatchableBranchPtrWithPatch() { return false; } static bool canJumpReplacePatchableBranch32WithPatch() { return false; } static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label) { const unsigned twoWordOpSize = 4; return label.labelAtOffset(-twoWordOpSize * 2); } static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID rd, void* initialValue) { #if OS(LINUX) ARMv7Assembler::revertJumpTo_movT3movtcmpT2(instructionStart.dataLocation(), rd, dataTempRegister, reinterpret_cast(initialValue)); #else UNUSED_PARAM(rd); ARMv7Assembler::revertJumpTo_movT3(instructionStart.dataLocation(), dataTempRegister, ARMThumbImmediate::makeUInt16(reinterpret_cast(initialValue) & 0xffff)); #endif } static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr) { UNREACHABLE_FOR_PLATFORM(); return CodeLocationLabel(); } static CodeLocationLabel startOfPatchableBranch32WithPatchOnAddress(CodeLocationDataLabel32) { UNREACHABLE_FOR_PLATFORM(); return CodeLocationLabel(); } static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel, Address, void*) { UNREACHABLE_FOR_PLATFORM(); } static void revertJumpReplacementToPatchableBranch32WithPatch(CodeLocationLabel, Address, int32_t) { UNREACHABLE_FOR_PLATFORM(); } static void repatchCall(CodeLocationCall call, CodeLocationLabel destination) { ARMv7Assembler::relinkCall(call.dataLocation(), destination.executableAddress()); } static void repatchCall(CodeLocationCall call, FunctionPtr destination) { ARMv7Assembler::relinkCall(call.dataLocation(), destination.executableAddress()); } #if ENABLE(MASM_PROBE) void probe(ProbeFunction, void* arg1, void* arg2); #endif // ENABLE(MASM_PROBE) protected: ALWAYS_INLINE Jump jump() { m_assembler.label(); // Force nop-padding if we're in the middle of a watchpoint. moveFixedWidthEncoding(TrustedImm32(0), dataTempRegister); return Jump(m_assembler.bx(dataTempRegister), m_makeJumpPatchable ? ARMv7Assembler::JumpNoConditionFixedSize : ARMv7Assembler::JumpNoCondition); } ALWAYS_INLINE Jump makeBranch(ARMv7Assembler::Condition cond) { m_assembler.label(); // Force nop-padding if we're in the middle of a watchpoint. m_assembler.it(cond, true, true); moveFixedWidthEncoding(TrustedImm32(0), dataTempRegister); return Jump(m_assembler.bx(dataTempRegister), m_makeJumpPatchable ? ARMv7Assembler::JumpConditionFixedSize : ARMv7Assembler::JumpCondition, cond); } ALWAYS_INLINE Jump makeBranch(RelationalCondition cond) { return makeBranch(armV7Condition(cond)); } ALWAYS_INLINE Jump makeBranch(ResultCondition cond) { return makeBranch(armV7Condition(cond)); } ALWAYS_INLINE Jump makeBranch(DoubleCondition cond) { return makeBranch(armV7Condition(cond)); } ArmAddress setupArmAddress(BaseIndex address) { if (address.offset) { ARMThumbImmediate imm = ARMThumbImmediate::makeUInt12OrEncodedImm(address.offset); if (imm.isValid()) m_assembler.add(addressTempRegister, address.base, imm); else { move(TrustedImm32(address.offset), addressTempRegister); m_assembler.add(addressTempRegister, addressTempRegister, address.base); } return ArmAddress(addressTempRegister, address.index, address.scale); } else return ArmAddress(address.base, address.index, address.scale); } ArmAddress setupArmAddress(Address address) { if ((address.offset >= -0xff) && (address.offset <= 0xfff)) return ArmAddress(address.base, address.offset); move(TrustedImm32(address.offset), addressTempRegister); return ArmAddress(address.base, addressTempRegister); } ArmAddress setupArmAddress(ImplicitAddress address) { if ((address.offset >= -0xff) && (address.offset <= 0xfff)) return ArmAddress(address.base, address.offset); move(TrustedImm32(address.offset), addressTempRegister); return ArmAddress(address.base, addressTempRegister); } RegisterID makeBaseIndexBase(BaseIndex address) { if (!address.offset) return address.base; ARMThumbImmediate imm = ARMThumbImmediate::makeUInt12OrEncodedImm(address.offset); if (imm.isValid()) m_assembler.add(addressTempRegister, address.base, imm); else { move(TrustedImm32(address.offset), addressTempRegister); m_assembler.add(addressTempRegister, addressTempRegister, address.base); } return addressTempRegister; } void moveFixedWidthEncoding(TrustedImm32 imm, RegisterID dst) { uint32_t value = imm.m_value; m_assembler.movT3(dst, ARMThumbImmediate::makeUInt16(value & 0xffff)); m_assembler.movt(dst, ARMThumbImmediate::makeUInt16(value >> 16)); } ARMv7Assembler::Condition armV7Condition(RelationalCondition cond) { return static_cast(cond); } ARMv7Assembler::Condition armV7Condition(ResultCondition cond) { return static_cast(cond); } ARMv7Assembler::Condition armV7Condition(DoubleCondition cond) { return static_cast(cond); } private: friend class LinkBuffer; static void linkCall(void* code, Call call, FunctionPtr function) { if (call.isFlagSet(Call::Tail)) ARMv7Assembler::linkJump(code, call.m_label, function.value()); else ARMv7Assembler::linkCall(code, call.m_label, function.value()); } #if ENABLE(MASM_PROBE) inline TrustedImm32 trustedImm32FromPtr(void* ptr) { return TrustedImm32(TrustedImmPtr(ptr)); } inline TrustedImm32 trustedImm32FromPtr(ProbeFunction function) { return TrustedImm32(TrustedImmPtr(reinterpret_cast(function))); } inline TrustedImm32 trustedImm32FromPtr(void (*function)()) { return TrustedImm32(TrustedImmPtr(reinterpret_cast(function))); } #endif bool m_makeJumpPatchable; }; } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // MacroAssemblerARMv7_h