/* * Copyright (C) 2008, 2012, 2014-2016 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MacroAssemblerX86_64_h #define MacroAssemblerX86_64_h #if ENABLE(ASSEMBLER) && CPU(X86_64) #include "MacroAssemblerX86Common.h" #define REPATCH_OFFSET_CALL_R11 3 inline bool CAN_SIGN_EXTEND_32_64(int64_t value) { return value == (int64_t)(int32_t)value; } namespace JSC { class MacroAssemblerX86_64 : public MacroAssemblerX86Common { public: static const Scale ScalePtr = TimesEight; using MacroAssemblerX86Common::add32; using MacroAssemblerX86Common::and32; using MacroAssemblerX86Common::branchAdd32; using MacroAssemblerX86Common::or32; using MacroAssemblerX86Common::sub32; using MacroAssemblerX86Common::load8; using MacroAssemblerX86Common::load32; using MacroAssemblerX86Common::store32; using MacroAssemblerX86Common::store8; using MacroAssemblerX86Common::call; using MacroAssemblerX86Common::jump; using MacroAssemblerX86Common::addDouble; using MacroAssemblerX86Common::loadDouble; using MacroAssemblerX86Common::convertInt32ToDouble; void add32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister()); add32(imm, Address(scratchRegister())); } void and32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister()); and32(imm, Address(scratchRegister())); } void add32(AbsoluteAddress address, RegisterID dest) { move(TrustedImmPtr(address.m_ptr), scratchRegister()); add32(Address(scratchRegister()), dest); } void or32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister()); or32(imm, Address(scratchRegister())); } void or32(RegisterID reg, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister()); or32(reg, Address(scratchRegister())); } void sub32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister()); sub32(imm, Address(scratchRegister())); } void load8(const void* address, RegisterID dest) { move(TrustedImmPtr(address), dest); load8(dest, dest); } void load32(const void* address, RegisterID dest) { if (dest == X86Registers::eax) m_assembler.movl_mEAX(address); else { move(TrustedImmPtr(address), dest); load32(dest, dest); } } void addDouble(AbsoluteAddress address, FPRegisterID dest) { move(TrustedImmPtr(address.m_ptr), scratchRegister()); m_assembler.addsd_mr(0, scratchRegister(), dest); } void convertInt32ToDouble(TrustedImm32 imm, FPRegisterID dest) { move(imm, scratchRegister()); m_assembler.cvtsi2sd_rr(scratchRegister(), dest); } void store32(TrustedImm32 imm, void* address) { move(TrustedImmPtr(address), scratchRegister()); store32(imm, scratchRegister()); } void store32(RegisterID source, void* address) { if (source == X86Registers::eax) m_assembler.movl_EAXm(address); else { move(TrustedImmPtr(address), scratchRegister()); store32(source, scratchRegister()); } } void store8(TrustedImm32 imm, void* address) { move(TrustedImmPtr(address), scratchRegister()); store8(imm, Address(scratchRegister())); } void store8(RegisterID reg, void* address) { move(TrustedImmPtr(address), scratchRegister()); store8(reg, Address(scratchRegister())); } #if OS(WINDOWS) Call callWithSlowPathReturnType() { // On Win64, when the return type is larger than 8 bytes, we need to allocate space on the stack for the return value. // On entry, rcx should contain a pointer to this stack space. The other parameters are shifted to the right, // rdx should contain the first argument, r8 should contain the second argument, and r9 should contain the third argument. // On return, rax contains a pointer to this stack value. See http://msdn.microsoft.com/en-us/library/7572ztz4.aspx. // We then need to copy the 16 byte return value into rax and rdx, since JIT expects the return value to be split between the two. // It is assumed that the parameters are already shifted to the right, when entering this method. // Note: this implementation supports up to 3 parameters. // JIT relies on the CallerFrame (frame pointer) being put on the stack, // On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit. // See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer. store64(X86Registers::ebp, Address(X86Registers::esp, -16)); // We also need to allocate the shadow space on the stack for the 4 parameter registers. // In addition, we need to allocate 16 bytes for the return value. // Also, we should allocate 16 bytes for the frame pointer, and return address (not populated). sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp); // The first parameter register should contain a pointer to the stack allocated space for the return value. move(X86Registers::esp, X86Registers::ecx); add64(TrustedImm32(4 * sizeof(int64_t)), X86Registers::ecx); DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister()); Call result = Call(m_assembler.call(scratchRegister()), Call::Linkable); add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp); // Copy the return value into rax and rdx. load64(Address(X86Registers::eax, sizeof(int64_t)), X86Registers::edx); load64(Address(X86Registers::eax), X86Registers::eax); ASSERT_UNUSED(label, differenceBetween(label, result) == REPATCH_OFFSET_CALL_R11); return result; } #endif Call call() { #if OS(WINDOWS) // JIT relies on the CallerFrame (frame pointer) being put on the stack, // On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit. // See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer. store64(X86Registers::ebp, Address(X86Registers::esp, -16)); // On Windows we need to copy the arguments that don't fit in registers to the stack location where the callee expects to find them. // We don't know the number of arguments at this point, so the arguments (5, 6, ...) should always be copied. // Copy argument 5 load64(Address(X86Registers::esp, 4 * sizeof(int64_t)), scratchRegister()); store64(scratchRegister(), Address(X86Registers::esp, -4 * static_cast(sizeof(int64_t)))); // Copy argument 6 load64(Address(X86Registers::esp, 5 * sizeof(int64_t)), scratchRegister()); store64(scratchRegister(), Address(X86Registers::esp, -3 * static_cast(sizeof(int64_t)))); // We also need to allocate the shadow space on the stack for the 4 parameter registers. // Also, we should allocate 16 bytes for the frame pointer, and return address (not populated). // In addition, we need to allocate 16 bytes for two more parameters, since the call can have up to 6 parameters. sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp); #endif DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister()); Call result = Call(m_assembler.call(scratchRegister()), Call::Linkable); #if OS(WINDOWS) add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp); #endif ASSERT_UNUSED(label, differenceBetween(label, result) == REPATCH_OFFSET_CALL_R11); return result; } // Address is a memory location containing the address to jump to void jump(AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister()); jump(Address(scratchRegister())); } Call tailRecursiveCall() { DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister()); Jump newJump = Jump(m_assembler.jmp_r(scratchRegister())); ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPATCH_OFFSET_CALL_R11); return Call::fromTailJump(newJump); } Call makeTailRecursiveCall(Jump oldJump) { oldJump.link(this); DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister()); Jump newJump = Jump(m_assembler.jmp_r(scratchRegister())); ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPATCH_OFFSET_CALL_R11); return Call::fromTailJump(newJump); } Jump branchAdd32(ResultCondition cond, TrustedImm32 src, AbsoluteAddress dest) { move(TrustedImmPtr(dest.m_ptr), scratchRegister()); add32(src, Address(scratchRegister())); return Jump(m_assembler.jCC(x86Condition(cond))); } void add64(RegisterID src, RegisterID dest) { m_assembler.addq_rr(src, dest); } void add64(Address src, RegisterID dest) { m_assembler.addq_mr(src.offset, src.base, dest); } void add64(RegisterID src, Address dest) { m_assembler.addq_rm(src, dest.offset, dest.base); } void add64(AbsoluteAddress src, RegisterID dest) { move(TrustedImmPtr(src.m_ptr), scratchRegister()); add64(Address(scratchRegister()), dest); } void add64(TrustedImm32 imm, RegisterID srcDest) { if (imm.m_value == 1) m_assembler.incq_r(srcDest); else m_assembler.addq_ir(imm.m_value, srcDest); } void add64(TrustedImm64 imm, RegisterID dest) { if (imm.m_value == 1) m_assembler.incq_r(dest); else { move(imm, scratchRegister()); add64(scratchRegister(), dest); } } void add64(TrustedImm32 imm, RegisterID src, RegisterID dest) { m_assembler.leaq_mr(imm.m_value, src, dest); } void add64(TrustedImm32 imm, Address address) { if (imm.m_value == 1) m_assembler.incq_m(address.offset, address.base); else m_assembler.addq_im(imm.m_value, address.offset, address.base); } void add64(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister()); add64(imm, Address(scratchRegister())); } void add64(RegisterID a, RegisterID b, RegisterID dest) { x86Lea64(BaseIndex(a, b, TimesOne), dest); } void x86Lea64(BaseIndex index, RegisterID dest) { if (!index.scale && !index.offset) { if (index.base == dest) { add64(index.index, dest); return; } if (index.index == dest) { add64(index.base, dest); return; } } m_assembler.leaq_mr(index.offset, index.base, index.index, index.scale, dest); } void addPtrNoFlags(TrustedImm32 imm, RegisterID srcDest) { m_assembler.leaq_mr(imm.m_value, srcDest, srcDest); } void and64(RegisterID src, RegisterID dest) { m_assembler.andq_rr(src, dest); } void and64(TrustedImm32 imm, RegisterID srcDest) { m_assembler.andq_ir(imm.m_value, srcDest); } void and64(TrustedImmPtr imm, RegisterID srcDest) { intptr_t intValue = imm.asIntptr(); if (intValue <= std::numeric_limits::max() && intValue >= std::numeric_limits::min()) { and64(TrustedImm32(static_cast(intValue)), srcDest); return; } move(imm, scratchRegister()); and64(scratchRegister(), srcDest); } void and64(RegisterID op1, RegisterID op2, RegisterID dest) { if (op1 == op2 && op1 != dest && op2 != dest) move(op1, dest); else if (op1 == dest) and64(op2, dest); else { move(op2, dest); and64(op1, dest); } } void countLeadingZeros64(RegisterID src, RegisterID dst) { if (supportsLZCNT()) { m_assembler.lzcntq_rr(src, dst); return; } m_assembler.bsrq_rr(src, dst); clz64AfterBsr(dst); } void countLeadingZeros64(Address src, RegisterID dst) { if (supportsLZCNT()) { m_assembler.lzcntq_mr(src.offset, src.base, dst); return; } m_assembler.bsrq_mr(src.offset, src.base, dst); clz64AfterBsr(dst); } void lshift64(TrustedImm32 imm, RegisterID dest) { m_assembler.shlq_i8r(imm.m_value, dest); } void lshift64(RegisterID src, RegisterID dest) { if (src == X86Registers::ecx) m_assembler.shlq_CLr(dest); else { ASSERT(src != dest); // Can only shift by ecx, so we do some swapping if we see anything else. swap(src, X86Registers::ecx); m_assembler.shlq_CLr(dest); swap(src, X86Registers::ecx); } } void rshift64(TrustedImm32 imm, RegisterID dest) { m_assembler.sarq_i8r(imm.m_value, dest); } void rshift64(RegisterID src, RegisterID dest) { if (src == X86Registers::ecx) m_assembler.sarq_CLr(dest); else { ASSERT(src != dest); // Can only shift by ecx, so we do some swapping if we see anything else. swap(src, X86Registers::ecx); m_assembler.sarq_CLr(dest); swap(src, X86Registers::ecx); } } void urshift64(TrustedImm32 imm, RegisterID dest) { m_assembler.shrq_i8r(imm.m_value, dest); } void urshift64(RegisterID src, RegisterID dest) { if (src == X86Registers::ecx) m_assembler.shrq_CLr(dest); else { ASSERT(src != dest); // Can only shift by ecx, so we do some swapping if we see anything else. swap(src, X86Registers::ecx); m_assembler.shrq_CLr(dest); swap(src, X86Registers::ecx); } } void mul64(RegisterID src, RegisterID dest) { m_assembler.imulq_rr(src, dest); } void mul64(RegisterID src1, RegisterID src2, RegisterID dest) { if (src2 == dest) { m_assembler.imulq_rr(src1, dest); return; } move(src1, dest); m_assembler.imulq_rr(src2, dest); } void x86ConvertToQuadWord64() { m_assembler.cqo(); } void x86ConvertToQuadWord64(RegisterID rax, RegisterID rdx) { ASSERT_UNUSED(rax, rax == X86Registers::eax); ASSERT_UNUSED(rdx, rdx == X86Registers::edx); x86ConvertToQuadWord64(); } void x86Div64(RegisterID denominator) { m_assembler.idivq_r(denominator); } void x86Div64(RegisterID rax, RegisterID rdx, RegisterID denominator) { ASSERT_UNUSED(rax, rax == X86Registers::eax); ASSERT_UNUSED(rdx, rdx == X86Registers::edx); x86Div64(denominator); } void neg64(RegisterID dest) { m_assembler.negq_r(dest); } void or64(RegisterID src, RegisterID dest) { m_assembler.orq_rr(src, dest); } void or64(TrustedImm64 imm, RegisterID srcDest) { if (imm.m_value <= std::numeric_limits::max() && imm.m_value >= std::numeric_limits::min()) { or64(TrustedImm32(static_cast(imm.m_value)), srcDest); return; } move(imm, scratchRegister()); or64(scratchRegister(), srcDest); } void or64(TrustedImm32 imm, RegisterID dest) { m_assembler.orq_ir(imm.m_value, dest); } void or64(RegisterID op1, RegisterID op2, RegisterID dest) { if (op1 == op2) move(op1, dest); else if (op1 == dest) or64(op2, dest); else { move(op2, dest); or64(op1, dest); } } void or64(TrustedImm32 imm, RegisterID src, RegisterID dest) { move(src, dest); or64(imm, dest); } void rotateRight64(TrustedImm32 imm, RegisterID srcDst) { m_assembler.rorq_i8r(imm.m_value, srcDst); } void sub64(RegisterID src, RegisterID dest) { m_assembler.subq_rr(src, dest); } void sub64(TrustedImm32 imm, RegisterID dest) { if (imm.m_value == 1) m_assembler.decq_r(dest); else m_assembler.subq_ir(imm.m_value, dest); } void sub64(TrustedImm64 imm, RegisterID dest) { if (imm.m_value == 1) m_assembler.decq_r(dest); else { move(imm, scratchRegister()); sub64(scratchRegister(), dest); } } void sub64(TrustedImm32 imm, Address address) { m_assembler.subq_im(imm.m_value, address.offset, address.base); } void sub64(Address src, RegisterID dest) { m_assembler.subq_mr(src.offset, src.base, dest); } void sub64(RegisterID src, Address dest) { m_assembler.subq_rm(src, dest.offset, dest.base); } void xor64(RegisterID src, RegisterID dest) { m_assembler.xorq_rr(src, dest); } void xor64(RegisterID op1, RegisterID op2, RegisterID dest) { if (op1 == op2) move(TrustedImm32(0), dest); else if (op1 == dest) xor64(op2, dest); else { move(op2, dest); xor64(op1, dest); } } void xor64(RegisterID src, Address dest) { m_assembler.xorq_rm(src, dest.offset, dest.base); } void xor64(TrustedImm32 imm, RegisterID srcDest) { m_assembler.xorq_ir(imm.m_value, srcDest); } void not64(RegisterID srcDest) { m_assembler.notq_r(srcDest); } void not64(Address dest) { m_assembler.notq_m(dest.offset, dest.base); } void load64(ImplicitAddress address, RegisterID dest) { m_assembler.movq_mr(address.offset, address.base, dest); } void load64(BaseIndex address, RegisterID dest) { m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest); } void load64(const void* address, RegisterID dest) { if (dest == X86Registers::eax) m_assembler.movq_mEAX(address); else { move(TrustedImmPtr(address), dest); load64(dest, dest); } } DataLabel32 load64WithAddressOffsetPatch(Address address, RegisterID dest) { padBeforePatch(); m_assembler.movq_mr_disp32(address.offset, address.base, dest); return DataLabel32(this); } DataLabelCompact load64WithCompactAddressOffsetPatch(Address address, RegisterID dest) { padBeforePatch(); m_assembler.movq_mr_disp8(address.offset, address.base, dest); return DataLabelCompact(this); } void store64(RegisterID src, ImplicitAddress address) { m_assembler.movq_rm(src, address.offset, address.base); } void store64(RegisterID src, BaseIndex address) { m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale); } void store64(RegisterID src, void* address) { if (src == X86Registers::eax) m_assembler.movq_EAXm(address); else { move(TrustedImmPtr(address), scratchRegister()); store64(src, scratchRegister()); } } void store64(TrustedImm32 imm, ImplicitAddress address) { m_assembler.movq_i32m(imm.m_value, address.offset, address.base); } void store64(TrustedImm64 imm, ImplicitAddress address) { if (CAN_SIGN_EXTEND_32_64(imm.m_value)) { store64(TrustedImm32(static_cast(imm.m_value)), address); return; } move(imm, scratchRegister()); store64(scratchRegister(), address); } void store64(TrustedImm64 imm, BaseIndex address) { move(imm, scratchRegister()); m_assembler.movq_rm(scratchRegister(), address.offset, address.base, address.index, address.scale); } DataLabel32 store64WithAddressOffsetPatch(RegisterID src, Address address) { padBeforePatch(); m_assembler.movq_rm_disp32(src, address.offset, address.base); return DataLabel32(this); } void swap64(RegisterID src, RegisterID dest) { m_assembler.xchgq_rr(src, dest); } void swap64(RegisterID src, Address dest) { m_assembler.xchgq_rm(src, dest.offset, dest.base); } void move64ToDouble(RegisterID src, FPRegisterID dest) { m_assembler.movq_rr(src, dest); } void moveDoubleTo64(FPRegisterID src, RegisterID dest) { m_assembler.movq_rr(src, dest); } void compare64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) { if (!right.m_value) { if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) { test64(*resultCondition, left, left, dest); return; } } m_assembler.cmpq_ir(right.m_value, left); set32(x86Condition(cond), dest); } void compare64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) { m_assembler.cmpq_rr(right, left); set32(x86Condition(cond), dest); } void compareDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID dest) { if (cond & DoubleConditionBitInvert) m_assembler.ucomisd_rr(left, right); else m_assembler.ucomisd_rr(right, left); if (cond == DoubleEqual) { if (left == right) { m_assembler.setnp_r(dest); return; } Jump isUnordered(m_assembler.jp()); m_assembler.sete_r(dest); isUnordered.link(this); return; } if (cond == DoubleNotEqualOrUnordered) { if (left == right) { m_assembler.setp_r(dest); return; } m_assembler.setp_r(dest); m_assembler.setne_r(dest); return; } ASSERT(!(cond & DoubleConditionBitSpecial)); m_assembler.setCC_r(static_cast(cond & ~DoubleConditionBits), dest); } Jump branch64(RelationalCondition cond, RegisterID left, RegisterID right) { m_assembler.cmpq_rr(right, left); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm32 right) { if (!right.m_value) { if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) return branchTest64(*resultCondition, left, left); } m_assembler.cmpq_ir(right.m_value, left); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm64 right) { if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) { m_assembler.testq_rr(left, left); return Jump(m_assembler.jCC(x86Condition(cond))); } move(right, scratchRegister()); return branch64(cond, left, scratchRegister()); } Jump branch64(RelationalCondition cond, RegisterID left, Address right) { m_assembler.cmpq_mr(right.offset, right.base, left); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branch64(RelationalCondition cond, AbsoluteAddress left, RegisterID right) { move(TrustedImmPtr(left.m_ptr), scratchRegister()); return branch64(cond, Address(scratchRegister()), right); } Jump branch64(RelationalCondition cond, Address left, RegisterID right) { m_assembler.cmpq_rm(right, left.offset, left.base); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branch64(RelationalCondition cond, Address left, TrustedImm32 right) { m_assembler.cmpq_im(right.m_value, left.offset, left.base); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branch64(RelationalCondition cond, Address left, TrustedImm64 right) { move(right, scratchRegister()); return branch64(cond, left, scratchRegister()); } Jump branch64(RelationalCondition cond, BaseIndex address, RegisterID right) { m_assembler.cmpq_rm(right, address.offset, address.base, address.index, address.scale); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchPtr(RelationalCondition cond, BaseIndex left, RegisterID right) { return branch64(cond, left, right); } Jump branchPtr(RelationalCondition cond, BaseIndex left, TrustedImmPtr right) { move(right, scratchRegister()); return branchPtr(cond, left, scratchRegister()); } Jump branchTest64(ResultCondition cond, RegisterID reg, RegisterID mask) { m_assembler.testq_rr(reg, mask); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) { // if we are only interested in the low seven bits, this can be tested with a testb if (mask.m_value == -1) m_assembler.testq_rr(reg, reg); else if ((mask.m_value & ~0x7f) == 0) m_assembler.testb_i8r(mask.m_value, reg); else m_assembler.testq_i32r(mask.m_value, reg); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm64 mask) { move(mask, scratchRegister()); return branchTest64(cond, reg, scratchRegister()); } void test64(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest) { if (mask.m_value == -1) m_assembler.testq_rr(reg, reg); else if ((mask.m_value & ~0x7f) == 0) m_assembler.testb_i8r(mask.m_value, reg); else m_assembler.testq_i32r(mask.m_value, reg); set32(x86Condition(cond), dest); } void test64(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest) { m_assembler.testq_rr(reg, mask); set32(x86Condition(cond), dest); } Jump branchTest64(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) { load64(address.m_ptr, scratchRegister()); return branchTest64(cond, scratchRegister(), mask); } Jump branchTest64(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) { if (mask.m_value == -1) m_assembler.cmpq_im(0, address.offset, address.base); else m_assembler.testq_i32m(mask.m_value, address.offset, address.base); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTest64(ResultCondition cond, Address address, RegisterID reg) { m_assembler.testq_rm(reg, address.offset, address.base); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTest64(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) { if (mask.m_value == -1) m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale); else m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchAdd64(ResultCondition cond, TrustedImm32 imm, RegisterID dest) { add64(imm, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchAdd64(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest) { if (src1 == dest) return branchAdd64(cond, src2, dest); move(src2, dest); return branchAdd64(cond, src1, dest); } Jump branchAdd64(ResultCondition cond, Address op1, RegisterID op2, RegisterID dest) { if (op2 == dest) return branchAdd64(cond, op1, dest); if (op1.base == dest) { load32(op1, dest); return branchAdd64(cond, op2, dest); } move(op2, dest); return branchAdd64(cond, op1, dest); } Jump branchAdd64(ResultCondition cond, RegisterID src1, Address src2, RegisterID dest) { return branchAdd64(cond, src2, src1, dest); } Jump branchAdd64(ResultCondition cond, RegisterID src, RegisterID dest) { add64(src, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchAdd64(ResultCondition cond, Address src, RegisterID dest) { add64(src, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchMul64(ResultCondition cond, RegisterID src, RegisterID dest) { mul64(src, dest); if (cond != Overflow) m_assembler.testq_rr(dest, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchMul64(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest) { if (src1 == dest) return branchMul64(cond, src2, dest); move(src2, dest); return branchMul64(cond, src1, dest); } Jump branchSub64(ResultCondition cond, TrustedImm32 imm, RegisterID dest) { sub64(imm, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchSub64(ResultCondition cond, RegisterID src, RegisterID dest) { sub64(src, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchSub64(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest) { move(src1, dest); return branchSub64(cond, src2, dest); } Jump branchNeg64(ResultCondition cond, RegisterID srcDest) { neg64(srcDest); return Jump(m_assembler.jCC(x86Condition(cond))); } void moveConditionally64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID src, RegisterID dest) { m_assembler.cmpq_rr(right, left); cmov(x86Condition(cond), src, dest); } void moveConditionally64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest) { m_assembler.cmpq_rr(right, left); if (thenCase != dest && elseCase != dest) { move(elseCase, dest); elseCase = dest; } if (elseCase == dest) cmov(x86Condition(cond), thenCase, dest); else cmov(x86Condition(invert(cond)), elseCase, dest); } void moveConditionally64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID thenCase, RegisterID elseCase, RegisterID dest) { if (!right.m_value) { if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) { moveConditionallyTest64(*resultCondition, left, left, thenCase, elseCase, dest); return; } } m_assembler.cmpq_ir(right.m_value, left); if (thenCase != dest && elseCase != dest) { move(elseCase, dest); elseCase = dest; } if (elseCase == dest) cmov(x86Condition(cond), thenCase, dest); else cmov(x86Condition(invert(cond)), elseCase, dest); } void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, RegisterID mask, RegisterID src, RegisterID dest) { m_assembler.testq_rr(testReg, mask); cmov(x86Condition(cond), src, dest); } void moveConditionallyTest64(ResultCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest) { ASSERT(isInvertible(cond)); ASSERT_WITH_MESSAGE(cond != Overflow, "TEST does not set the Overflow Flag."); m_assembler.testq_rr(right, left); if (thenCase != dest && elseCase != dest) { move(elseCase, dest); elseCase = dest; } if (elseCase == dest) cmov(x86Condition(cond), thenCase, dest); else cmov(x86Condition(invert(cond)), elseCase, dest); } void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, TrustedImm32 mask, RegisterID src, RegisterID dest) { // if we are only interested in the low seven bits, this can be tested with a testb if (mask.m_value == -1) m_assembler.testq_rr(testReg, testReg); else if ((mask.m_value & ~0x7f) == 0) m_assembler.testb_i8r(mask.m_value, testReg); else m_assembler.testq_i32r(mask.m_value, testReg); cmov(x86Condition(cond), src, dest); } void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, TrustedImm32 mask, RegisterID thenCase, RegisterID elseCase, RegisterID dest) { ASSERT(isInvertible(cond)); ASSERT_WITH_MESSAGE(cond != Overflow, "TEST does not set the Overflow Flag."); if (mask.m_value == -1) m_assembler.testq_rr(testReg, testReg); else if (!(mask.m_value & ~0x7f)) m_assembler.testb_i8r(mask.m_value, testReg); else m_assembler.testq_i32r(mask.m_value, testReg); if (thenCase != dest && elseCase != dest) { move(elseCase, dest); elseCase = dest; } if (elseCase == dest) cmov(x86Condition(cond), thenCase, dest); else cmov(x86Condition(invert(cond)), elseCase, dest); } template void moveDoubleConditionally64(RelationalCondition cond, LeftType left, RightType right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest) { static_assert(!std::is_same::value && !std::is_same::value, "One of the tested argument could be aliased on dest. Use moveDoubleConditionallyDouble()."); if (thenCase != dest && elseCase != dest) { moveDouble(elseCase, dest); elseCase = dest; } if (elseCase == dest) { Jump falseCase = branch64(invert(cond), left, right); moveDouble(thenCase, dest); falseCase.link(this); } else { Jump trueCase = branch64(cond, left, right); moveDouble(elseCase, dest); trueCase.link(this); } } template void moveDoubleConditionallyTest64(ResultCondition cond, TestType test, MaskType mask, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest) { static_assert(!std::is_same::value && !std::is_same::value, "One of the tested argument could be aliased on dest. Use moveDoubleConditionallyDouble()."); if (elseCase == dest && isInvertible(cond)) { Jump falseCase = branchTest64(invert(cond), test, mask); moveDouble(thenCase, dest); falseCase.link(this); } else if (thenCase == dest) { Jump trueCase = branchTest64(cond, test, mask); moveDouble(elseCase, dest); trueCase.link(this); } Jump trueCase = branchTest64(cond, test, mask); moveDouble(elseCase, dest); Jump falseCase = jump(); trueCase.link(this); moveDouble(thenCase, dest); falseCase.link(this); } void abortWithReason(AbortReason reason) { move(TrustedImm32(reason), X86Registers::r11); breakpoint(); } void abortWithReason(AbortReason reason, intptr_t misc) { move(TrustedImm64(misc), X86Registers::r10); abortWithReason(reason); } ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest) { ConvertibleLoadLabel result = ConvertibleLoadLabel(this); m_assembler.movq_mr(address.offset, address.base, dest); return result; } DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest) { padBeforePatch(); m_assembler.movq_i64r(initialValue.asIntptr(), dest); return DataLabelPtr(this); } DataLabelPtr moveWithPatch(TrustedImm32 initialValue, RegisterID dest) { padBeforePatch(); m_assembler.movq_i64r(initialValue.m_value, dest); return DataLabelPtr(this); } Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { dataLabel = moveWithPatch(initialRightValue, scratchRegister()); return branch64(cond, left, scratchRegister()); } Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { dataLabel = moveWithPatch(initialRightValue, scratchRegister()); return branch64(cond, left, scratchRegister()); } Jump branch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0)) { padBeforePatch(); m_assembler.movl_i32r(initialRightValue.m_value, scratchRegister()); dataLabel = DataLabel32(this); return branch32(cond, left, scratchRegister()); } DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address) { DataLabelPtr label = moveWithPatch(initialValue, scratchRegister()); store64(scratchRegister(), address); return label; } PatchableJump patchableBranch64(RelationalCondition cond, RegisterID reg, TrustedImm64 imm) { return PatchableJump(branch64(cond, reg, imm)); } PatchableJump patchableBranch64(RelationalCondition cond, RegisterID left, RegisterID right) { return PatchableJump(branch64(cond, left, right)); } using MacroAssemblerX86Common::branch8; Jump branch8(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right) { MacroAssemblerX86Common::move(TrustedImmPtr(left.m_ptr), scratchRegister()); return MacroAssemblerX86Common::branch8(cond, Address(scratchRegister()), right); } using MacroAssemblerX86Common::branchTest8; Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1)) { TrustedImmPtr addr(reinterpret_cast(address.offset)); MacroAssemblerX86Common::move(addr, scratchRegister()); return MacroAssemblerX86Common::branchTest8(cond, BaseIndex(scratchRegister(), address.base, TimesOne), mask); } Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) { MacroAssemblerX86Common::move(TrustedImmPtr(address.m_ptr), scratchRegister()); return MacroAssemblerX86Common::branchTest8(cond, Address(scratchRegister()), mask); } void convertInt64ToDouble(RegisterID src, FPRegisterID dest) { m_assembler.cvtsi2sdq_rr(src, dest); } void convertInt64ToDouble(Address src, FPRegisterID dest) { m_assembler.cvtsi2sdq_mr(src.offset, src.base, dest); } void convertInt64ToFloat(RegisterID src, FPRegisterID dest) { m_assembler.cvtsi2ssq_rr(src, dest); } void convertInt64ToFloat(Address src, FPRegisterID dest) { m_assembler.cvtsi2ssq_mr(src.offset, src.base, dest); } static bool supportsFloatingPoint() { return true; } static bool supportsFloatingPointTruncate() { return true; } static bool supportsFloatingPointSqrt() { return true; } static bool supportsFloatingPointAbs() { return true; } static FunctionPtr readCallTarget(CodeLocationCall call) { return FunctionPtr(X86Assembler::readPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation())); } bool haveScratchRegisterForBlinding() { return m_allowScratchRegister; } RegisterID scratchRegisterForBlinding() { return scratchRegister(); } static bool canJumpReplacePatchableBranchPtrWithPatch() { return true; } static bool canJumpReplacePatchableBranch32WithPatch() { return true; } static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label) { const int rexBytes = 1; const int opcodeBytes = 1; const int immediateBytes = 8; const int totalBytes = rexBytes + opcodeBytes + immediateBytes; ASSERT(totalBytes >= maxJumpReplacementSize()); return label.labelAtOffset(-totalBytes); } static CodeLocationLabel startOfBranch32WithPatchOnRegister(CodeLocationDataLabel32 label) { const int rexBytes = 1; const int opcodeBytes = 1; const int immediateBytes = 4; const int totalBytes = rexBytes + opcodeBytes + immediateBytes; ASSERT(totalBytes >= maxJumpReplacementSize()); return label.labelAtOffset(-totalBytes); } static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr label) { return startOfBranchPtrWithPatchOnRegister(label); } static CodeLocationLabel startOfPatchableBranch32WithPatchOnAddress(CodeLocationDataLabel32 label) { return startOfBranch32WithPatchOnRegister(label); } static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel instructionStart, Address, void* initialValue) { X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast(initialValue), s_scratchRegister); } static void revertJumpReplacementToPatchableBranch32WithPatch(CodeLocationLabel instructionStart, Address, int32_t initialValue) { X86Assembler::revertJumpTo_movl_i32r(instructionStart.executableAddress(), initialValue, s_scratchRegister); } static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID, void* initialValue) { X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast(initialValue), s_scratchRegister); } static void repatchCall(CodeLocationCall call, CodeLocationLabel destination) { X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress()); } static void repatchCall(CodeLocationCall call, FunctionPtr destination) { X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress()); } private: // If lzcnt is not available, use this after BSR // to count the leading zeros. void clz64AfterBsr(RegisterID dst) { Jump srcIsNonZero = m_assembler.jCC(x86Condition(NonZero)); move(TrustedImm32(64), dst); Jump skipNonZeroCase = jump(); srcIsNonZero.link(this); xor64(TrustedImm32(0x3f), dst); skipNonZeroCase.link(this); } friend class LinkBuffer; static void linkCall(void* code, Call call, FunctionPtr function) { if (!call.isFlagSet(Call::Near)) X86Assembler::linkPointer(code, call.m_label.labelAtOffset(-REPATCH_OFFSET_CALL_R11), function.value()); else if (call.isFlagSet(Call::Tail)) X86Assembler::linkJump(code, call.m_label, function.value()); else X86Assembler::linkCall(code, call.m_label, function.value()); } }; } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // MacroAssemblerX86_64_h