/* * Copyright (C) 2008-2010, 2012-2016 Apple Inc. All rights reserved. * Copyright (C) 2008 Cameron Zwarich * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "CodeBlock.h" #include "BasicBlockLocation.h" #include "BytecodeGenerator.h" #include "BytecodeUseDef.h" #include "CallLinkStatus.h" #include "DFGCapabilities.h" #include "DFGCommon.h" #include "DFGDriver.h" #include "DFGJITCode.h" #include "DFGWorklist.h" #include "Debugger.h" #include "FunctionExecutableDump.h" #include "GetPutInfo.h" #include "InlineCallFrame.h" #include "Interpreter.h" #include "JIT.h" #include "JSCJSValue.h" #include "JSFunction.h" #include "JSLexicalEnvironment.h" #include "JSModuleEnvironment.h" #include "LLIntEntrypoint.h" #include "LLIntPrototypeLoadAdaptiveStructureWatchpoint.h" #include "LowLevelInterpreter.h" #include "JSCInlines.h" #include "PCToCodeOriginMap.h" #include "PolymorphicAccess.h" #include "ProfilerDatabase.h" #include "ReduceWhitespace.h" #include "Repatch.h" #include "SlotVisitorInlines.h" #include "StackVisitor.h" #include "StructureStubInfo.h" #include "TypeLocationCache.h" #include "TypeProfiler.h" #include "UnlinkedInstructionStream.h" #include "VMInlines.h" #include #include #include #include #include #if ENABLE(JIT) #include "RegisterAtOffsetList.h" #endif #if ENABLE(DFG_JIT) #include "DFGOperations.h" #endif #if ENABLE(FTL_JIT) #include "FTLJITCode.h" #endif namespace JSC { const ClassInfo CodeBlock::s_info = { "CodeBlock", 0, 0, CREATE_METHOD_TABLE(CodeBlock) }; const ClassInfo FunctionCodeBlock::s_info = { "FunctionCodeBlock", &Base::s_info, 0, CREATE_METHOD_TABLE(FunctionCodeBlock) }; #if ENABLE(WEBASSEMBLY) const ClassInfo WebAssemblyCodeBlock::s_info = { "WebAssemblyCodeBlock", &Base::s_info, 0, CREATE_METHOD_TABLE(WebAssemblyCodeBlock) }; #endif const ClassInfo GlobalCodeBlock::s_info = { "GlobalCodeBlock", &Base::s_info, 0, CREATE_METHOD_TABLE(GlobalCodeBlock) }; const ClassInfo ProgramCodeBlock::s_info = { "ProgramCodeBlock", &Base::s_info, 0, CREATE_METHOD_TABLE(ProgramCodeBlock) }; const ClassInfo ModuleProgramCodeBlock::s_info = { "ModuleProgramCodeBlock", &Base::s_info, 0, CREATE_METHOD_TABLE(ModuleProgramCodeBlock) }; const ClassInfo EvalCodeBlock::s_info = { "EvalCodeBlock", &Base::s_info, 0, CREATE_METHOD_TABLE(EvalCodeBlock) }; void FunctionCodeBlock::destroy(JSCell* cell) { jsCast(cell)->~FunctionCodeBlock(); } #if ENABLE(WEBASSEMBLY) void WebAssemblyCodeBlock::destroy(JSCell* cell) { jsCast(cell)->~WebAssemblyCodeBlock(); } #endif void ProgramCodeBlock::destroy(JSCell* cell) { jsCast(cell)->~ProgramCodeBlock(); } void ModuleProgramCodeBlock::destroy(JSCell* cell) { jsCast(cell)->~ModuleProgramCodeBlock(); } void EvalCodeBlock::destroy(JSCell* cell) { jsCast(cell)->~EvalCodeBlock(); } CString CodeBlock::inferredName() const { switch (codeType()) { case GlobalCode: return ""; case EvalCode: return ""; case FunctionCode: return jsCast(ownerExecutable())->inferredName().utf8(); case ModuleCode: return ""; default: CRASH(); return CString("", 0); } } bool CodeBlock::hasHash() const { return !!m_hash; } bool CodeBlock::isSafeToComputeHash() const { return !isCompilationThread(); } CodeBlockHash CodeBlock::hash() const { if (!m_hash) { RELEASE_ASSERT(isSafeToComputeHash()); m_hash = CodeBlockHash(ownerScriptExecutable()->source(), specializationKind()); } return m_hash; } CString CodeBlock::sourceCodeForTools() const { if (codeType() != FunctionCode) return ownerScriptExecutable()->source().toUTF8(); SourceProvider* provider = source(); FunctionExecutable* executable = jsCast(ownerExecutable()); UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable(); unsigned unlinkedStartOffset = unlinked->startOffset(); unsigned linkedStartOffset = executable->source().startOffset(); int delta = linkedStartOffset - unlinkedStartOffset; unsigned rangeStart = delta + unlinked->unlinkedFunctionNameStart(); unsigned rangeEnd = delta + unlinked->startOffset() + unlinked->sourceLength(); return toCString( "function ", provider->source().substring(rangeStart, rangeEnd - rangeStart).utf8()); } CString CodeBlock::sourceCodeOnOneLine() const { return reduceWhitespace(sourceCodeForTools()); } CString CodeBlock::hashAsStringIfPossible() const { if (hasHash() || isSafeToComputeHash()) return toCString(hash()); return ""; } void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const { out.print(inferredName(), "#", hashAsStringIfPossible()); out.print(":[", RawPointer(this), "->"); if (!!m_alternative) out.print(RawPointer(alternative()), "->"); out.print(RawPointer(ownerExecutable()), ", ", jitType, codeType()); if (codeType() == FunctionCode) out.print(specializationKind()); out.print(", ", instructionCount()); if (this->jitType() == JITCode::BaselineJIT && m_shouldAlwaysBeInlined) out.print(" (ShouldAlwaysBeInlined)"); if (ownerScriptExecutable()->neverInline()) out.print(" (NeverInline)"); if (ownerScriptExecutable()->neverOptimize()) out.print(" (NeverOptimize)"); else if (ownerScriptExecutable()->neverFTLOptimize()) out.print(" (NeverFTLOptimize)"); if (ownerScriptExecutable()->didTryToEnterInLoop()) out.print(" (DidTryToEnterInLoop)"); if (ownerScriptExecutable()->isStrictMode()) out.print(" (StrictMode)"); if (this->jitType() == JITCode::BaselineJIT && m_didFailFTLCompilation) out.print(" (FTLFail)"); if (this->jitType() == JITCode::BaselineJIT && m_hasBeenCompiledWithFTL) out.print(" (HadFTLReplacement)"); out.print("]"); } void CodeBlock::dump(PrintStream& out) const { dumpAssumingJITType(out, jitType()); } static CString idName(int id0, const Identifier& ident) { return toCString(ident.impl(), "(@id", id0, ")"); } CString CodeBlock::registerName(int r) const { if (isConstantRegisterIndex(r)) return constantName(r); return toCString(VirtualRegister(r)); } CString CodeBlock::constantName(int index) const { JSValue value = getConstant(index); return toCString(value, "(", VirtualRegister(index), ")"); } static CString regexpToSourceString(RegExp* regExp) { char postfix[5] = { '/', 0, 0, 0, 0 }; int index = 1; if (regExp->global()) postfix[index++] = 'g'; if (regExp->ignoreCase()) postfix[index++] = 'i'; if (regExp->multiline()) postfix[index] = 'm'; if (regExp->sticky()) postfix[index++] = 'y'; if (regExp->unicode()) postfix[index++] = 'u'; return toCString("/", regExp->pattern().impl(), postfix); } static CString regexpName(int re, RegExp* regexp) { return toCString(regexpToSourceString(regexp), "(@re", re, ")"); } NEVER_INLINE static const char* debugHookName(int debugHookID) { switch (static_cast(debugHookID)) { case DidEnterCallFrame: return "didEnterCallFrame"; case WillLeaveCallFrame: return "willLeaveCallFrame"; case WillExecuteStatement: return "willExecuteStatement"; case WillExecuteProgram: return "willExecuteProgram"; case DidExecuteProgram: return "didExecuteProgram"; case DidReachBreakpoint: return "didReachBreakpoint"; } RELEASE_ASSERT_NOT_REACHED(); return ""; } void CodeBlock::printUnaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); } void CodeBlock::printBinaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); } void CodeBlock::printConditionalJump(PrintStream& out, ExecState* exec, const Instruction*, const Instruction*& it, int location, const char* op) { int r0 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %d(->%d)", registerName(r0).data(), offset, location + offset); } void CodeBlock::printGetByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it) { const char* op; switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { case op_get_by_id: op = "get_by_id"; break; case op_get_by_id_proto_load: op = "get_by_id_proto_load"; break; case op_get_by_id_unset: op = "get_by_id_unset"; break; case op_get_array_length: op = "array_length"; break; default: RELEASE_ASSERT_NOT_REACHED(); #if COMPILER_QUIRK(CONSIDERS_UNREACHABLE_CODE) op = 0; #endif } int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data()); it += 4; // Increment up to the value profiler. } static void dumpStructure(PrintStream& out, const char* name, Structure* structure, const Identifier& ident) { if (!structure) return; out.printf("%s = %p", name, structure); PropertyOffset offset = structure->getConcurrently(ident.impl()); if (offset != invalidOffset) out.printf(" (offset = %d)", offset); } static void dumpChain(PrintStream& out, StructureChain* chain, const Identifier& ident) { out.printf("chain = %p: [", chain); bool first = true; for (WriteBarrier* currentStructure = chain->head(); *currentStructure; ++currentStructure) { if (first) first = false; else out.printf(", "); dumpStructure(out, "struct", currentStructure->get(), ident); } out.printf("]"); } void CodeBlock::printGetByIdCacheStatus(PrintStream& out, ExecState* exec, int location, const StubInfoMap& map) { Instruction* instruction = instructions().begin() + location; const Identifier& ident = identifier(instruction[3].u.operand); UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations. if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_get_array_length) out.printf(" llint(array_length)"); else if (StructureID structureID = instruction[4].u.structureID) { Structure* structure = m_vm->heap.structureIDTable().get(structureID); out.printf(" llint("); dumpStructure(out, "struct", structure, ident); out.printf(")"); if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_get_by_id_proto_load) out.printf(" proto(%p)", instruction[6].u.pointer); } #if ENABLE(JIT) if (StructureStubInfo* stubPtr = map.get(CodeOrigin(location))) { StructureStubInfo& stubInfo = *stubPtr; if (stubInfo.resetByGC) out.print(" (Reset By GC)"); out.printf(" jit("); Structure* baseStructure = nullptr; PolymorphicAccess* stub = nullptr; switch (stubInfo.cacheType) { case CacheType::GetByIdSelf: out.printf("self"); baseStructure = stubInfo.u.byIdSelf.baseObjectStructure.get(); break; case CacheType::Stub: out.printf("stub"); stub = stubInfo.u.stub; break; case CacheType::Unset: out.printf("unset"); break; default: RELEASE_ASSERT_NOT_REACHED(); break; } if (baseStructure) { out.printf(", "); dumpStructure(out, "struct", baseStructure, ident); } if (stub) out.print(", ", *stub); out.printf(")"); } #else UNUSED_PARAM(map); #endif } void CodeBlock::printPutByIdCacheStatus(PrintStream& out, int location, const StubInfoMap& map) { Instruction* instruction = instructions().begin() + location; const Identifier& ident = identifier(instruction[2].u.operand); UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations. out.print(", ", instruction[8].u.putByIdFlags); if (StructureID structureID = instruction[4].u.structureID) { Structure* structure = m_vm->heap.structureIDTable().get(structureID); out.print(" llint("); if (StructureID newStructureID = instruction[6].u.structureID) { Structure* newStructure = m_vm->heap.structureIDTable().get(newStructureID); dumpStructure(out, "prev", structure, ident); out.print(", "); dumpStructure(out, "next", newStructure, ident); if (StructureChain* chain = instruction[7].u.structureChain.get()) { out.print(", "); dumpChain(out, chain, ident); } } else dumpStructure(out, "struct", structure, ident); out.print(")"); } #if ENABLE(JIT) if (StructureStubInfo* stubPtr = map.get(CodeOrigin(location))) { StructureStubInfo& stubInfo = *stubPtr; if (stubInfo.resetByGC) out.print(" (Reset By GC)"); out.printf(" jit("); switch (stubInfo.cacheType) { case CacheType::PutByIdReplace: out.print("replace, "); dumpStructure(out, "struct", stubInfo.u.byIdSelf.baseObjectStructure.get(), ident); break; case CacheType::Stub: { out.print("stub, ", *stubInfo.u.stub); break; } case CacheType::Unset: out.printf("unset"); break; default: RELEASE_ASSERT_NOT_REACHED(); break; } out.printf(")"); } #else UNUSED_PARAM(map); #endif } void CodeBlock::printCallOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, CacheDumpMode cacheDumpMode, bool& hasPrintedProfiling, const CallLinkInfoMap& map) { int dst = (++it)->u.operand; int func = (++it)->u.operand; int argCount = (++it)->u.operand; int registerOffset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %s, %d, %d", registerName(dst).data(), registerName(func).data(), argCount, registerOffset); if (cacheDumpMode == DumpCaches) { LLIntCallLinkInfo* callLinkInfo = it[1].u.callLinkInfo; if (callLinkInfo->lastSeenCallee) { out.printf( " llint(%p, exec %p)", callLinkInfo->lastSeenCallee.get(), callLinkInfo->lastSeenCallee->executable()); } #if ENABLE(JIT) if (CallLinkInfo* info = map.get(CodeOrigin(location))) { JSFunction* target = info->lastSeenCallee(); if (target) out.printf(" jit(%p, exec %p)", target, target->executable()); } if (jitType() != JITCode::FTLJIT) out.print(" status(", CallLinkStatus::computeFor(this, location, map), ")"); #else UNUSED_PARAM(map); #endif } ++it; ++it; dumpArrayProfiling(out, it, hasPrintedProfiling); dumpValueProfiling(out, it, hasPrintedProfiling); } void CodeBlock::printPutByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, op); out.printf("%s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data()); it += 5; } void CodeBlock::dumpSource() { dumpSource(WTF::dataFile()); } void CodeBlock::dumpSource(PrintStream& out) { ScriptExecutable* executable = ownerScriptExecutable(); if (executable->isFunctionExecutable()) { FunctionExecutable* functionExecutable = reinterpret_cast(executable); StringView source = functionExecutable->source().provider()->getRange( functionExecutable->parametersStartOffset(), functionExecutable->typeProfilingEndOffset() + 1); // Type profiling end offset is the character before the '}'. out.print("function ", inferredName(), source); return; } out.print(executable->source().view()); } void CodeBlock::dumpBytecode() { dumpBytecode(WTF::dataFile()); } void CodeBlock::dumpBytecode(PrintStream& out) { // We only use the ExecState* for things that don't actually lead to JS execution, // like converting a JSString to a String. Hence the globalExec is appropriate. ExecState* exec = m_globalObject->globalExec(); size_t instructionCount = 0; for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)]) ++instructionCount; out.print(*this); out.printf( ": %lu m_instructions; %lu bytes; %d parameter(s); %d callee register(s); %d variable(s)", static_cast(instructions().size()), static_cast(instructions().size() * sizeof(Instruction)), m_numParameters, m_numCalleeLocals, m_numVars); out.printf("\n"); StubInfoMap stubInfos; CallLinkInfoMap callLinkInfos; getStubInfoMap(stubInfos); getCallLinkInfoMap(callLinkInfos); const Instruction* begin = instructions().begin(); const Instruction* end = instructions().end(); for (const Instruction* it = begin; it != end; ++it) dumpBytecode(out, exec, begin, it, stubInfos, callLinkInfos); if (numberOfIdentifiers()) { out.printf("\nIdentifiers:\n"); size_t i = 0; do { out.printf(" id%u = %s\n", static_cast(i), identifier(i).string().utf8().data()); ++i; } while (i != numberOfIdentifiers()); } if (!m_constantRegisters.isEmpty()) { out.printf("\nConstants:\n"); size_t i = 0; do { const char* sourceCodeRepresentationDescription = nullptr; switch (m_constantsSourceCodeRepresentation[i]) { case SourceCodeRepresentation::Double: sourceCodeRepresentationDescription = ": in source as double"; break; case SourceCodeRepresentation::Integer: sourceCodeRepresentationDescription = ": in source as integer"; break; case SourceCodeRepresentation::Other: sourceCodeRepresentationDescription = ""; break; } out.printf(" k%u = %s%s\n", static_cast(i), toCString(m_constantRegisters[i].get()).data(), sourceCodeRepresentationDescription); ++i; } while (i < m_constantRegisters.size()); } if (size_t count = m_unlinkedCode->numberOfRegExps()) { out.printf("\nm_regexps:\n"); size_t i = 0; do { out.printf(" re%u = %s\n", static_cast(i), regexpToSourceString(m_unlinkedCode->regexp(i)).data()); ++i; } while (i < count); } dumpExceptionHandlers(out); if (m_rareData && !m_rareData->m_switchJumpTables.isEmpty()) { out.printf("Switch Jump Tables:\n"); unsigned i = 0; do { out.printf(" %1d = {\n", i); int entry = 0; Vector::const_iterator end = m_rareData->m_switchJumpTables[i].branchOffsets.end(); for (Vector::const_iterator iter = m_rareData->m_switchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { if (!*iter) continue; out.printf("\t\t%4d => %04d\n", entry + m_rareData->m_switchJumpTables[i].min, *iter); } out.printf(" }\n"); ++i; } while (i < m_rareData->m_switchJumpTables.size()); } if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) { out.printf("\nString Switch Jump Tables:\n"); unsigned i = 0; do { out.printf(" %1d = {\n", i); StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end(); for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter) out.printf("\t\t\"%s\" => %04d\n", iter->key->utf8().data(), iter->value.branchOffset); out.printf(" }\n"); ++i; } while (i < m_rareData->m_stringSwitchJumpTables.size()); } if (m_rareData && !m_rareData->m_liveCalleeLocalsAtYield.isEmpty()) { out.printf("\nLive Callee Locals:\n"); unsigned i = 0; do { const FastBitVector& liveness = m_rareData->m_liveCalleeLocalsAtYield[i]; out.printf(" live%1u = ", i); liveness.dump(out); out.printf("\n"); ++i; } while (i < m_rareData->m_liveCalleeLocalsAtYield.size()); } out.printf("\n"); } void CodeBlock::dumpExceptionHandlers(PrintStream& out) { if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) { out.printf("\nException Handlers:\n"); unsigned i = 0; do { HandlerInfo& handler = m_rareData->m_exceptionHandlers[i]; out.printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] } %s\n", i + 1, handler.start, handler.end, handler.target, handler.typeName()); ++i; } while (i < m_rareData->m_exceptionHandlers.size()); } } void CodeBlock::beginDumpProfiling(PrintStream& out, bool& hasPrintedProfiling) { if (hasPrintedProfiling) { out.print("; "); return; } out.print(" "); hasPrintedProfiling = true; } void CodeBlock::dumpValueProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) { ConcurrentJITLocker locker(m_lock); ++it; CString description = it->u.profile->briefDescription(locker); if (!description.length()) return; beginDumpProfiling(out, hasPrintedProfiling); out.print(description); } void CodeBlock::dumpArrayProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) { ConcurrentJITLocker locker(m_lock); ++it; if (!it->u.arrayProfile) return; CString description = it->u.arrayProfile->briefDescription(locker, this); if (!description.length()) return; beginDumpProfiling(out, hasPrintedProfiling); out.print(description); } void CodeBlock::dumpRareCaseProfile(PrintStream& out, const char* name, RareCaseProfile* profile, bool& hasPrintedProfiling) { if (!profile || !profile->m_counter) return; beginDumpProfiling(out, hasPrintedProfiling); out.print(name, profile->m_counter); } void CodeBlock::dumpResultProfile(PrintStream& out, ResultProfile* profile, bool& hasPrintedProfiling) { if (!profile) return; beginDumpProfiling(out, hasPrintedProfiling); out.print("results: ", *profile); } void CodeBlock::printLocationAndOp(PrintStream& out, ExecState*, int location, const Instruction*&, const char* op) { out.printf("[%4d] %-17s ", location, op); } void CodeBlock::printLocationOpAndRegisterOperand(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, int operand) { printLocationAndOp(out, exec, location, it, op); out.printf("%s", registerName(operand).data()); } void CodeBlock::dumpBytecode( PrintStream& out, ExecState* exec, const Instruction* begin, const Instruction*& it, const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) { int location = it - begin; bool hasPrintedProfiling = false; OpcodeID opcode = exec->interpreter()->getOpcodeID(it->u.opcode); switch (opcode) { case op_enter: { printLocationAndOp(out, exec, location, it, "enter"); break; } case op_get_scope: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "get_scope", r0); break; } case op_create_direct_arguments: { int r0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "create_direct_arguments"); out.printf("%s", registerName(r0).data()); break; } case op_create_scoped_arguments: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "create_scoped_arguments"); out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); break; } case op_create_cloned_arguments: { int r0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "create_cloned_arguments"); out.printf("%s", registerName(r0).data()); break; } case op_argument_count: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "argument_count", r0); break; } case op_copy_rest: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; unsigned argumentOffset = (++it)->u.unsignedValue; printLocationAndOp(out, exec, location, it, "copy_rest"); out.printf("%s, %s, ", registerName(r0).data(), registerName(r1).data()); out.printf("ArgumentsOffset: %u", argumentOffset); break; } case op_get_rest_length: { int r0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "get_rest_length"); out.printf("%s, ", registerName(r0).data()); unsigned argumentOffset = (++it)->u.unsignedValue; out.printf("ArgumentsOffset: %u", argumentOffset); break; } case op_create_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; unsigned inferredInlineCapacity = (++it)->u.operand; unsigned cachedFunction = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "create_this"); out.printf("%s, %s, %u, %u", registerName(r0).data(), registerName(r1).data(), inferredInlineCapacity, cachedFunction); break; } case op_to_this: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "to_this", r0); Structure* structure = (++it)->u.structure.get(); if (structure) out.print(", cache(struct = ", RawPointer(structure), ")"); out.print(", ", (++it)->u.toThisStatus); break; } case op_check_tdz: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "op_check_tdz", r0); break; } case op_new_object: { int r0 = (++it)->u.operand; unsigned inferredInlineCapacity = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_object"); out.printf("%s, %u", registerName(r0).data(), inferredInlineCapacity); ++it; // Skip object allocation profile. break; } case op_new_array: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_array"); out.printf("%s, %s, %d", registerName(dst).data(), registerName(argv).data(), argc); ++it; // Skip array allocation profile. break; } case op_new_array_with_size: { int dst = (++it)->u.operand; int length = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_array_with_size"); out.printf("%s, %s", registerName(dst).data(), registerName(length).data()); ++it; // Skip array allocation profile. break; } case op_new_array_buffer: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_array_buffer"); out.printf("%s, %d, %d", registerName(dst).data(), argv, argc); ++it; // Skip array allocation profile. break; } case op_new_regexp: { int r0 = (++it)->u.operand; int re0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_regexp"); out.printf("%s, ", registerName(r0).data()); if (r0 >=0 && r0 < (int)m_unlinkedCode->numberOfRegExps()) out.printf("%s", regexpName(re0, regexp(re0)).data()); else out.printf("bad_regexp(%d)", re0); break; } case op_mov: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "mov"); out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); break; } case op_profile_type: { int r0 = (++it)->u.operand; ++it; ++it; ++it; ++it; printLocationAndOp(out, exec, location, it, "op_profile_type"); out.printf("%s", registerName(r0).data()); break; } case op_profile_control_flow: { BasicBlockLocation* basicBlockLocation = (++it)->u.basicBlockLocation; printLocationAndOp(out, exec, location, it, "profile_control_flow"); out.printf("[%d, %d]", basicBlockLocation->startOffset(), basicBlockLocation->endOffset()); break; } case op_not: { printUnaryOp(out, exec, location, it, "not"); break; } case op_eq: { printBinaryOp(out, exec, location, it, "eq"); break; } case op_eq_null: { printUnaryOp(out, exec, location, it, "eq_null"); break; } case op_neq: { printBinaryOp(out, exec, location, it, "neq"); break; } case op_neq_null: { printUnaryOp(out, exec, location, it, "neq_null"); break; } case op_stricteq: { printBinaryOp(out, exec, location, it, "stricteq"); break; } case op_nstricteq: { printBinaryOp(out, exec, location, it, "nstricteq"); break; } case op_less: { printBinaryOp(out, exec, location, it, "less"); break; } case op_lesseq: { printBinaryOp(out, exec, location, it, "lesseq"); break; } case op_greater: { printBinaryOp(out, exec, location, it, "greater"); break; } case op_greatereq: { printBinaryOp(out, exec, location, it, "greatereq"); break; } case op_inc: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "inc", r0); break; } case op_dec: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "dec", r0); break; } case op_to_number: { printUnaryOp(out, exec, location, it, "to_number"); break; } case op_to_string: { printUnaryOp(out, exec, location, it, "to_string"); break; } case op_negate: { printUnaryOp(out, exec, location, it, "negate"); break; } case op_add: { printBinaryOp(out, exec, location, it, "add"); ++it; break; } case op_mul: { printBinaryOp(out, exec, location, it, "mul"); ++it; break; } case op_div: { printBinaryOp(out, exec, location, it, "div"); ++it; break; } case op_mod: { printBinaryOp(out, exec, location, it, "mod"); break; } case op_sub: { printBinaryOp(out, exec, location, it, "sub"); ++it; break; } case op_lshift: { printBinaryOp(out, exec, location, it, "lshift"); break; } case op_rshift: { printBinaryOp(out, exec, location, it, "rshift"); break; } case op_urshift: { printBinaryOp(out, exec, location, it, "urshift"); break; } case op_bitand: { printBinaryOp(out, exec, location, it, "bitand"); ++it; break; } case op_bitxor: { printBinaryOp(out, exec, location, it, "bitxor"); ++it; break; } case op_bitor: { printBinaryOp(out, exec, location, it, "bitor"); ++it; break; } case op_overrides_has_instance: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "overrides_has_instance"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); break; } case op_instanceof: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "instanceof"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); break; } case op_instanceof_custom: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int r3 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "instanceof_custom"); out.printf("%s, %s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), registerName(r3).data()); break; } case op_unsigned: { printUnaryOp(out, exec, location, it, "unsigned"); break; } case op_typeof: { printUnaryOp(out, exec, location, it, "typeof"); break; } case op_is_empty: { printUnaryOp(out, exec, location, it, "is_empty"); break; } case op_is_undefined: { printUnaryOp(out, exec, location, it, "is_undefined"); break; } case op_is_boolean: { printUnaryOp(out, exec, location, it, "is_boolean"); break; } case op_is_number: { printUnaryOp(out, exec, location, it, "is_number"); break; } case op_is_string: { printUnaryOp(out, exec, location, it, "is_string"); break; } case op_is_object: { printUnaryOp(out, exec, location, it, "is_object"); break; } case op_is_object_or_null: { printUnaryOp(out, exec, location, it, "is_object_or_null"); break; } case op_is_function: { printUnaryOp(out, exec, location, it, "is_function"); break; } case op_in: { printBinaryOp(out, exec, location, it, "in"); break; } case op_try_get_by_id: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "try_get_by_id"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data()); break; } case op_get_by_id: case op_get_by_id_proto_load: case op_get_by_id_unset: case op_get_array_length: { printGetByIdOp(out, exec, location, it); printGetByIdCacheStatus(out, exec, location, stubInfos); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_get_by_id_with_this: { printLocationAndOp(out, exec, location, it, "get_by_id_with_this"); int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int id0 = (++it)->u.operand; out.printf("%s, %s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), idName(id0, identifier(id0)).data()); break; } case op_get_by_val_with_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int r3 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "get_by_val_with_this"); out.printf("%s, %s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), registerName(r3).data()); break; } case op_put_by_id: { printPutByIdOp(out, exec, location, it, "put_by_id"); printPutByIdCacheStatus(out, location, stubInfos); break; } case op_put_by_id_with_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_by_id_with_this"); out.printf("%s, %s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data(), registerName(r2).data()); break; } case op_put_by_val_with_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int r3 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_by_val_with_this"); out.printf("%s, %s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), registerName(r3).data()); break; } case op_put_getter_by_id: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int n0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_getter_by_id"); out.printf("%s, %s, %d, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), n0, registerName(r1).data()); break; } case op_put_setter_by_id: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int n0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_setter_by_id"); out.printf("%s, %s, %d, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), n0, registerName(r1).data()); break; } case op_put_getter_setter_by_id: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int n0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_getter_setter_by_id"); out.printf("%s, %s, %d, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), n0, registerName(r1).data(), registerName(r2).data()); break; } case op_put_getter_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int n0 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_getter_by_val"); out.printf("%s, %s, %d, %s", registerName(r0).data(), registerName(r1).data(), n0, registerName(r2).data()); break; } case op_put_setter_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int n0 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_setter_by_val"); out.printf("%s, %s, %d, %s", registerName(r0).data(), registerName(r1).data(), n0, registerName(r2).data()); break; } case op_del_by_id: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "del_by_id"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data()); break; } case op_get_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "get_by_val"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); dumpArrayProfiling(out, it, hasPrintedProfiling); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_put_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_by_val"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); dumpArrayProfiling(out, it, hasPrintedProfiling); break; } case op_put_by_val_direct: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_by_val_direct"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); dumpArrayProfiling(out, it, hasPrintedProfiling); break; } case op_del_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "del_by_val"); out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); break; } case op_put_by_index: { int r0 = (++it)->u.operand; unsigned n0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_by_index"); out.printf("%s, %u, %s", registerName(r0).data(), n0, registerName(r1).data()); break; } case op_jmp: { int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jmp"); out.printf("%d(->%d)", offset, location + offset); break; } case op_jtrue: { printConditionalJump(out, exec, begin, it, location, "jtrue"); break; } case op_jfalse: { printConditionalJump(out, exec, begin, it, location, "jfalse"); break; } case op_jeq_null: { printConditionalJump(out, exec, begin, it, location, "jeq_null"); break; } case op_jneq_null: { printConditionalJump(out, exec, begin, it, location, "jneq_null"); break; } case op_jneq_ptr: { int r0 = (++it)->u.operand; Special::Pointer pointer = (++it)->u.specialPointer; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jneq_ptr"); out.printf("%s, %d (%p), %d(->%d)", registerName(r0).data(), pointer, m_globalObject->actualPointerFor(pointer), offset, location + offset); break; } case op_jless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jless"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jlesseq"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jgreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jgreater"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jgreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jgreatereq"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jnless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jnless"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jnlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jnlesseq"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jngreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jngreater"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_jngreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "jngreatereq"); out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } case op_loop_hint: { printLocationAndOp(out, exec, location, it, "loop_hint"); break; } case op_watchdog: { printLocationAndOp(out, exec, location, it, "watchdog"); break; } case op_log_shadow_chicken_prologue: { int r0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "log_shadow_chicken_prologue"); out.printf("%s", registerName(r0).data()); break; } case op_log_shadow_chicken_tail: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "log_shadow_chicken_tail"); out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); break; } case op_switch_imm: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "switch_imm"); out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); break; } case op_switch_char: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "switch_char"); out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); break; } case op_switch_string: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "switch_string"); out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); break; } case op_new_func: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int f0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_func"); out.printf("%s, %s, f%d", registerName(r0).data(), registerName(r1).data(), f0); break; } case op_new_generator_func: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int f0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_generator_func"); out.printf("%s, %s, f%d", registerName(r0).data(), registerName(r1).data(), f0); break; } case op_new_func_exp: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int f0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_func_exp"); out.printf("%s, %s, f%d", registerName(r0).data(), registerName(r1).data(), f0); break; } case op_new_generator_func_exp: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int f0 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "new_generator_func_exp"); out.printf("%s, %s, f%d", registerName(r0).data(), registerName(r1).data(), f0); break; } case op_set_function_name: { int funcReg = (++it)->u.operand; int nameReg = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "set_function_name"); out.printf("%s, %s", registerName(funcReg).data(), registerName(nameReg).data()); break; } case op_call: { printCallOp(out, exec, location, it, "call", DumpCaches, hasPrintedProfiling, callLinkInfos); break; } case op_tail_call: { printCallOp(out, exec, location, it, "tail_call", DumpCaches, hasPrintedProfiling, callLinkInfos); break; } case op_call_eval: { printCallOp(out, exec, location, it, "call_eval", DontDumpCaches, hasPrintedProfiling, callLinkInfos); break; } case op_construct_varargs: case op_call_varargs: case op_tail_call_varargs: { int result = (++it)->u.operand; int callee = (++it)->u.operand; int thisValue = (++it)->u.operand; int arguments = (++it)->u.operand; int firstFreeRegister = (++it)->u.operand; int varArgOffset = (++it)->u.operand; ++it; printLocationAndOp(out, exec, location, it, opcode == op_call_varargs ? "call_varargs" : opcode == op_construct_varargs ? "construct_varargs" : "tail_call_varargs"); out.printf("%s, %s, %s, %s, %d, %d", registerName(result).data(), registerName(callee).data(), registerName(thisValue).data(), registerName(arguments).data(), firstFreeRegister, varArgOffset); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_ret: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "ret", r0); break; } case op_construct: { printCallOp(out, exec, location, it, "construct", DumpCaches, hasPrintedProfiling, callLinkInfos); break; } case op_strcat: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int count = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "strcat"); out.printf("%s, %s, %d", registerName(r0).data(), registerName(r1).data(), count); break; } case op_to_primitive: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "to_primitive"); out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); break; } case op_get_enumerable_length: { int dst = it[1].u.operand; int base = it[2].u.operand; printLocationAndOp(out, exec, location, it, "op_get_enumerable_length"); out.printf("%s, %s", registerName(dst).data(), registerName(base).data()); it += OPCODE_LENGTH(op_get_enumerable_length) - 1; break; } case op_has_indexed_property: { int dst = it[1].u.operand; int base = it[2].u.operand; int propertyName = it[3].u.operand; ArrayProfile* arrayProfile = it[4].u.arrayProfile; printLocationAndOp(out, exec, location, it, "op_has_indexed_property"); out.printf("%s, %s, %s, %p", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), arrayProfile); it += OPCODE_LENGTH(op_has_indexed_property) - 1; break; } case op_has_structure_property: { int dst = it[1].u.operand; int base = it[2].u.operand; int propertyName = it[3].u.operand; int enumerator = it[4].u.operand; printLocationAndOp(out, exec, location, it, "op_has_structure_property"); out.printf("%s, %s, %s, %s", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), registerName(enumerator).data()); it += OPCODE_LENGTH(op_has_structure_property) - 1; break; } case op_has_generic_property: { int dst = it[1].u.operand; int base = it[2].u.operand; int propertyName = it[3].u.operand; printLocationAndOp(out, exec, location, it, "op_has_generic_property"); out.printf("%s, %s, %s", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data()); it += OPCODE_LENGTH(op_has_generic_property) - 1; break; } case op_get_direct_pname: { int dst = it[1].u.operand; int base = it[2].u.operand; int propertyName = it[3].u.operand; int index = it[4].u.operand; int enumerator = it[5].u.operand; ValueProfile* profile = it[6].u.profile; printLocationAndOp(out, exec, location, it, "op_get_direct_pname"); out.printf("%s, %s, %s, %s, %s, %p", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), registerName(index).data(), registerName(enumerator).data(), profile); it += OPCODE_LENGTH(op_get_direct_pname) - 1; break; } case op_get_property_enumerator: { int dst = it[1].u.operand; int base = it[2].u.operand; printLocationAndOp(out, exec, location, it, "op_get_property_enumerator"); out.printf("%s, %s", registerName(dst).data(), registerName(base).data()); it += OPCODE_LENGTH(op_get_property_enumerator) - 1; break; } case op_enumerator_structure_pname: { int dst = it[1].u.operand; int enumerator = it[2].u.operand; int index = it[3].u.operand; printLocationAndOp(out, exec, location, it, "op_enumerator_structure_pname"); out.printf("%s, %s, %s", registerName(dst).data(), registerName(enumerator).data(), registerName(index).data()); it += OPCODE_LENGTH(op_enumerator_structure_pname) - 1; break; } case op_enumerator_generic_pname: { int dst = it[1].u.operand; int enumerator = it[2].u.operand; int index = it[3].u.operand; printLocationAndOp(out, exec, location, it, "op_enumerator_generic_pname"); out.printf("%s, %s, %s", registerName(dst).data(), registerName(enumerator).data(), registerName(index).data()); it += OPCODE_LENGTH(op_enumerator_generic_pname) - 1; break; } case op_to_index_string: { int dst = it[1].u.operand; int index = it[2].u.operand; printLocationAndOp(out, exec, location, it, "op_to_index_string"); out.printf("%s, %s", registerName(dst).data(), registerName(index).data()); it += OPCODE_LENGTH(op_to_index_string) - 1; break; } case op_push_with_scope: { int dst = (++it)->u.operand; int newScope = (++it)->u.operand; int currentScope = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "push_with_scope"); out.printf("%s, %s, %s", registerName(dst).data(), registerName(newScope).data(), registerName(currentScope).data()); break; } case op_get_parent_scope: { int dst = (++it)->u.operand; int parentScope = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "get_parent_scope"); out.printf("%s, %s", registerName(dst).data(), registerName(parentScope).data()); break; } case op_create_lexical_environment: { int dst = (++it)->u.operand; int scope = (++it)->u.operand; int symbolTable = (++it)->u.operand; int initialValue = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "create_lexical_environment"); out.printf("%s, %s, %s, %s", registerName(dst).data(), registerName(scope).data(), registerName(symbolTable).data(), registerName(initialValue).data()); break; } case op_catch: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "catch"); out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); break; } case op_throw: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "throw", r0); break; } case op_throw_static_error: { int k0 = (++it)->u.operand; int k1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "throw_static_error"); out.printf("%s, %s", constantName(k0).data(), k1 ? "true" : "false"); break; } case op_debug: { int debugHookID = (++it)->u.operand; int hasBreakpointFlag = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "debug"); out.printf("%s, %d", debugHookName(debugHookID), hasBreakpointFlag); break; } case op_save: { int generator = (++it)->u.operand; unsigned liveCalleeLocalsIndex = (++it)->u.unsignedValue; int offset = (++it)->u.operand; const FastBitVector& liveness = m_rareData->m_liveCalleeLocalsAtYield[liveCalleeLocalsIndex]; printLocationAndOp(out, exec, location, it, "save"); out.printf("%s, ", registerName(generator).data()); liveness.dump(out); out.printf("(@live%1u), %d(->%d)", liveCalleeLocalsIndex, offset, location + offset); break; } case op_resume: { int generator = (++it)->u.operand; unsigned liveCalleeLocalsIndex = (++it)->u.unsignedValue; const FastBitVector& liveness = m_rareData->m_liveCalleeLocalsAtYield[liveCalleeLocalsIndex]; printLocationAndOp(out, exec, location, it, "resume"); out.printf("%s, ", registerName(generator).data()); liveness.dump(out); out.printf("(@live%1u)", liveCalleeLocalsIndex); break; } case op_assert: { int condition = (++it)->u.operand; int line = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "assert"); out.printf("%s, %d", registerName(condition).data(), line); break; } case op_end: { int r0 = (++it)->u.operand; printLocationOpAndRegisterOperand(out, exec, location, it, "end", r0); break; } case op_resolve_scope: { int r0 = (++it)->u.operand; int scope = (++it)->u.operand; int id0 = (++it)->u.operand; ResolveType resolveType = static_cast((++it)->u.operand); int depth = (++it)->u.operand; void* pointer = (++it)->u.pointer; printLocationAndOp(out, exec, location, it, "resolve_scope"); out.printf("%s, %s, %s, <%s>, %d, %p", registerName(r0).data(), registerName(scope).data(), idName(id0, identifier(id0)).data(), resolveTypeName(resolveType), depth, pointer); break; } case op_get_from_scope: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; GetPutInfo getPutInfo = GetPutInfo((++it)->u.operand); ++it; // Structure int operand = (++it)->u.operand; // Operand printLocationAndOp(out, exec, location, it, "get_from_scope"); out.print(registerName(r0), ", ", registerName(r1)); if (static_cast(id0) == UINT_MAX) out.print(", anonymous"); else out.print(", ", idName(id0, identifier(id0))); out.print(", ", getPutInfo.operand(), "<", resolveModeName(getPutInfo.resolveMode()), "|", resolveTypeName(getPutInfo.resolveType()), "|", initializationModeName(getPutInfo.initializationMode()), ">, ", operand); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_put_to_scope: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; GetPutInfo getPutInfo = GetPutInfo((++it)->u.operand); ++it; // Structure int operand = (++it)->u.operand; // Operand printLocationAndOp(out, exec, location, it, "put_to_scope"); out.print(registerName(r0)); if (static_cast(id0) == UINT_MAX) out.print(", anonymous"); else out.print(", ", idName(id0, identifier(id0))); out.print(", ", registerName(r1), ", ", getPutInfo.operand(), "<", resolveModeName(getPutInfo.resolveMode()), "|", resolveTypeName(getPutInfo.resolveType()), "|", initializationModeName(getPutInfo.initializationMode()), ">, , ", operand); break; } case op_get_from_arguments: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "get_from_arguments"); out.printf("%s, %s, %d", registerName(r0).data(), registerName(r1).data(), offset); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_put_to_arguments: { int r0 = (++it)->u.operand; int offset = (++it)->u.operand; int r1 = (++it)->u.operand; printLocationAndOp(out, exec, location, it, "put_to_arguments"); out.printf("%s, %d, %s", registerName(r0).data(), offset, registerName(r1).data()); break; } default: RELEASE_ASSERT_NOT_REACHED(); } dumpRareCaseProfile(out, "rare case: ", rareCaseProfileForBytecodeOffset(location), hasPrintedProfiling); dumpResultProfile(out, resultProfileForBytecodeOffset(location), hasPrintedProfiling); #if ENABLE(DFG_JIT) Vector exitSites = exitProfile().exitSitesFor(location); if (!exitSites.isEmpty()) { out.print(" !! frequent exits: "); CommaPrinter comma; for (unsigned i = 0; i < exitSites.size(); ++i) out.print(comma, exitSites[i].kind(), " ", exitSites[i].jitType()); } #else // ENABLE(DFG_JIT) UNUSED_PARAM(location); #endif // ENABLE(DFG_JIT) out.print("\n"); } void CodeBlock::dumpBytecode( PrintStream& out, unsigned bytecodeOffset, const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) { ExecState* exec = m_globalObject->globalExec(); const Instruction* it = instructions().begin() + bytecodeOffset; dumpBytecode(out, exec, instructions().begin(), it, stubInfos, callLinkInfos); } #define FOR_EACH_MEMBER_VECTOR(macro) \ macro(instructions) \ macro(callLinkInfos) \ macro(linkedCallerList) \ macro(identifiers) \ macro(functionExpressions) \ macro(constantRegisters) #define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \ macro(regexps) \ macro(functions) \ macro(exceptionHandlers) \ macro(switchJumpTables) \ macro(stringSwitchJumpTables) \ macro(evalCodeCache) \ macro(expressionInfo) \ macro(lineInfo) \ macro(callReturnIndexVector) template static size_t sizeInBytes(const Vector& vector) { return vector.capacity() * sizeof(T); } namespace { class PutToScopeFireDetail : public FireDetail { public: PutToScopeFireDetail(CodeBlock* codeBlock, const Identifier& ident) : m_codeBlock(codeBlock) , m_ident(ident) { } void dump(PrintStream& out) const override { out.print("Linking put_to_scope in ", FunctionExecutableDump(jsCast(m_codeBlock->ownerExecutable())), " for ", m_ident); } private: CodeBlock* m_codeBlock; const Identifier& m_ident; }; } // anonymous namespace CodeBlock::CodeBlock(VM* vm, Structure* structure, CopyParsedBlockTag, CodeBlock& other) : JSCell(*vm, structure) , m_globalObject(other.m_globalObject) , m_numCalleeLocals(other.m_numCalleeLocals) , m_numVars(other.m_numVars) , m_shouldAlwaysBeInlined(true) #if ENABLE(JIT) , m_capabilityLevelState(DFG::CapabilityLevelNotSet) #endif , m_didFailFTLCompilation(false) , m_hasBeenCompiledWithFTL(false) , m_isConstructor(other.m_isConstructor) , m_isStrictMode(other.m_isStrictMode) , m_codeType(other.m_codeType) , m_unlinkedCode(*other.m_vm, this, other.m_unlinkedCode.get()) , m_hasDebuggerStatement(false) , m_steppingMode(SteppingModeDisabled) , m_numBreakpoints(0) , m_ownerExecutable(*other.m_vm, this, other.m_ownerExecutable.get()) , m_vm(other.m_vm) , m_instructions(other.m_instructions) , m_thisRegister(other.m_thisRegister) , m_scopeRegister(other.m_scopeRegister) , m_hash(other.m_hash) , m_source(other.m_source) , m_sourceOffset(other.m_sourceOffset) , m_firstLineColumnOffset(other.m_firstLineColumnOffset) , m_constantRegisters(other.m_constantRegisters) , m_constantsSourceCodeRepresentation(other.m_constantsSourceCodeRepresentation) , m_functionDecls(other.m_functionDecls) , m_functionExprs(other.m_functionExprs) , m_osrExitCounter(0) , m_optimizationDelayCounter(0) , m_reoptimizationRetryCounter(0) , m_creationTime(std::chrono::steady_clock::now()) { m_visitWeaklyHasBeenCalled.store(false, std::memory_order_relaxed); ASSERT(heap()->isDeferred()); ASSERT(m_scopeRegister.isLocal()); setNumParameters(other.numParameters()); } void CodeBlock::finishCreation(VM& vm, CopyParsedBlockTag, CodeBlock& other) { Base::finishCreation(vm); optimizeAfterWarmUp(); jitAfterWarmUp(); if (other.m_rareData) { createRareDataIfNecessary(); m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers; m_rareData->m_switchJumpTables = other.m_rareData->m_switchJumpTables; m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; m_rareData->m_liveCalleeLocalsAtYield = other.m_rareData->m_liveCalleeLocalsAtYield; } heap()->m_codeBlocks.add(this); } CodeBlock::CodeBlock(VM* vm, Structure* structure, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset) : JSCell(*vm, structure) , m_globalObject(scope->globalObject()->vm(), this, scope->globalObject()) , m_numCalleeLocals(unlinkedCodeBlock->m_numCalleeLocals) , m_numVars(unlinkedCodeBlock->m_numVars) , m_shouldAlwaysBeInlined(true) #if ENABLE(JIT) , m_capabilityLevelState(DFG::CapabilityLevelNotSet) #endif , m_didFailFTLCompilation(false) , m_hasBeenCompiledWithFTL(false) , m_isConstructor(unlinkedCodeBlock->isConstructor()) , m_isStrictMode(unlinkedCodeBlock->isStrictMode()) , m_codeType(unlinkedCodeBlock->codeType()) , m_unlinkedCode(m_globalObject->vm(), this, unlinkedCodeBlock) , m_hasDebuggerStatement(false) , m_steppingMode(SteppingModeDisabled) , m_numBreakpoints(0) , m_ownerExecutable(m_globalObject->vm(), this, ownerExecutable) , m_vm(unlinkedCodeBlock->vm()) , m_thisRegister(unlinkedCodeBlock->thisRegister()) , m_scopeRegister(unlinkedCodeBlock->scopeRegister()) , m_source(sourceProvider) , m_sourceOffset(sourceOffset) , m_firstLineColumnOffset(firstLineColumnOffset) , m_osrExitCounter(0) , m_optimizationDelayCounter(0) , m_reoptimizationRetryCounter(0) , m_creationTime(std::chrono::steady_clock::now()) { m_visitWeaklyHasBeenCalled.store(false, std::memory_order_relaxed); ASSERT(heap()->isDeferred()); ASSERT(m_scopeRegister.isLocal()); ASSERT(m_source); setNumParameters(unlinkedCodeBlock->numParameters()); } void CodeBlock::finishCreation(VM& vm, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope) { Base::finishCreation(vm); if (vm.typeProfiler() || vm.controlFlowProfiler()) vm.functionHasExecutedCache()->removeUnexecutedRange(ownerExecutable->sourceID(), ownerExecutable->typeProfilingStartOffset(), ownerExecutable->typeProfilingEndOffset()); setConstantRegisters(unlinkedCodeBlock->constantRegisters(), unlinkedCodeBlock->constantsSourceCodeRepresentation()); if (unlinkedCodeBlock->usesGlobalObject()) m_constantRegisters[unlinkedCodeBlock->globalObjectRegister().toConstantIndex()].set(*m_vm, this, m_globalObject.get()); for (unsigned i = 0; i < LinkTimeConstantCount; i++) { LinkTimeConstant type = static_cast(i); if (unsigned registerIndex = unlinkedCodeBlock->registerIndexForLinkTimeConstant(type)) m_constantRegisters[registerIndex].set(*m_vm, this, m_globalObject->jsCellForLinkTimeConstant(type)); } // We already have the cloned symbol table for the module environment since we need to instantiate // the module environments before linking the code block. We replace the stored symbol table with the already cloned one. if (UnlinkedModuleProgramCodeBlock* unlinkedModuleProgramCodeBlock = jsDynamicCast(unlinkedCodeBlock)) { SymbolTable* clonedSymbolTable = jsCast(ownerExecutable)->moduleEnvironmentSymbolTable(); if (m_vm->typeProfiler()) { ConcurrentJITLocker locker(clonedSymbolTable->m_lock); clonedSymbolTable->prepareForTypeProfiling(locker); } replaceConstant(unlinkedModuleProgramCodeBlock->moduleEnvironmentSymbolTableConstantRegisterOffset(), clonedSymbolTable); } bool shouldUpdateFunctionHasExecutedCache = vm.typeProfiler() || vm.controlFlowProfiler(); m_functionDecls = RefCountedArray>(unlinkedCodeBlock->numberOfFunctionDecls()); for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) { UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i); if (shouldUpdateFunctionHasExecutedCache) vm.functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); m_functionDecls[i].set(*m_vm, this, unlinkedExecutable->link(*m_vm, ownerExecutable->source())); } m_functionExprs = RefCountedArray>(unlinkedCodeBlock->numberOfFunctionExprs()); for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) { UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i); if (shouldUpdateFunctionHasExecutedCache) vm.functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); m_functionExprs[i].set(*m_vm, this, unlinkedExecutable->link(*m_vm, ownerExecutable->source())); } if (unlinkedCodeBlock->hasRareData()) { createRareDataIfNecessary(); if (size_t count = unlinkedCodeBlock->constantBufferCount()) { m_rareData->m_constantBuffers.grow(count); for (size_t i = 0; i < count; i++) { const UnlinkedCodeBlock::ConstantBuffer& buffer = unlinkedCodeBlock->constantBuffer(i); m_rareData->m_constantBuffers[i] = buffer; } } if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) { m_rareData->m_exceptionHandlers.resizeToFit(count); for (size_t i = 0; i < count; i++) { const UnlinkedHandlerInfo& unlinkedHandler = unlinkedCodeBlock->exceptionHandler(i); HandlerInfo& handler = m_rareData->m_exceptionHandlers[i]; #if ENABLE(JIT) handler.initialize(unlinkedHandler, CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(op_catch)))); #else handler.initialize(unlinkedHandler); #endif } } if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) { m_rareData->m_stringSwitchJumpTables.grow(count); for (size_t i = 0; i < count; i++) { UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin(); UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end(); for (; ptr != end; ++ptr) { OffsetLocation offset; offset.branchOffset = ptr->value; m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset); } } } if (size_t count = unlinkedCodeBlock->numberOfSwitchJumpTables()) { m_rareData->m_switchJumpTables.grow(count); for (size_t i = 0; i < count; i++) { UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->switchJumpTable(i); SimpleJumpTable& destTable = m_rareData->m_switchJumpTables[i]; destTable.branchOffsets = sourceTable.branchOffsets; destTable.min = sourceTable.min; } } } // Allocate metadata buffers for the bytecode if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos()) m_llintCallLinkInfos = RefCountedArray(size); if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles()) m_arrayProfiles.grow(size); if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles()) m_arrayAllocationProfiles = RefCountedArray(size); if (size_t size = unlinkedCodeBlock->numberOfValueProfiles()) m_valueProfiles = RefCountedArray(size); if (size_t size = unlinkedCodeBlock->numberOfObjectAllocationProfiles()) m_objectAllocationProfiles = RefCountedArray(size); #if ENABLE(JIT) setCalleeSaveRegisters(RegisterSet::llintBaselineCalleeSaveRegisters()); #endif // Copy and translate the UnlinkedInstructions unsigned instructionCount = unlinkedCodeBlock->instructions().count(); UnlinkedInstructionStream::Reader instructionReader(unlinkedCodeBlock->instructions()); // Bookkeep the strongly referenced module environments. HashSet stronglyReferencedModuleEnvironments; // Bookkeep the merge point bytecode offsets. Vector mergePointBytecodeOffsets; RefCountedArray instructions(instructionCount); for (unsigned i = 0; !instructionReader.atEnd(); ) { const UnlinkedInstruction* pc = instructionReader.next(); unsigned opLength = opcodeLength(pc[0].u.opcode); instructions[i] = vm.interpreter->getOpcode(pc[0].u.opcode); for (size_t j = 1; j < opLength; ++j) { if (sizeof(int32_t) != sizeof(intptr_t)) instructions[i + j].u.pointer = 0; instructions[i + j].u.operand = pc[j].u.operand; } switch (pc[0].u.opcode) { case op_has_indexed_property: { int arrayProfileIndex = pc[opLength - 1].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; break; } case op_call_varargs: case op_tail_call_varargs: case op_construct_varargs: case op_get_by_val: { int arrayProfileIndex = pc[opLength - 2].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; FALLTHROUGH; } case op_get_direct_pname: case op_get_by_id: case op_get_from_arguments: { ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; instructions[i + opLength - 1] = profile; break; } case op_put_by_val: { int arrayProfileIndex = pc[opLength - 1].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; break; } case op_put_by_val_direct: { int arrayProfileIndex = pc[opLength - 1].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; break; } case op_new_array: case op_new_array_buffer: case op_new_array_with_size: { int arrayAllocationProfileIndex = pc[opLength - 1].u.operand; instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex]; break; } case op_new_object: { int objectAllocationProfileIndex = pc[opLength - 1].u.operand; ObjectAllocationProfile* objectAllocationProfile = &m_objectAllocationProfiles[objectAllocationProfileIndex]; int inferredInlineCapacity = pc[opLength - 2].u.operand; instructions[i + opLength - 1] = objectAllocationProfile; objectAllocationProfile->initialize(vm, this, m_globalObject->objectPrototype(), inferredInlineCapacity); break; } case op_call: case op_tail_call: case op_call_eval: { ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; instructions[i + opLength - 1] = profile; int arrayProfileIndex = pc[opLength - 2].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; break; } case op_construct: { instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; instructions[i + opLength - 1] = profile; break; } case op_get_array_length: CRASH(); case op_resolve_scope: { const Identifier& ident = identifier(pc[3].u.operand); ResolveType type = static_cast(pc[4].u.operand); RELEASE_ASSERT(type != LocalClosureVar); int localScopeDepth = pc[5].u.operand; ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, type, InitializationMode::NotInitialization); instructions[i + 4].u.operand = op.type; instructions[i + 5].u.operand = op.depth; if (op.lexicalEnvironment) { if (op.type == ModuleVar) { // Keep the linked module environment strongly referenced. if (stronglyReferencedModuleEnvironments.add(jsCast(op.lexicalEnvironment)).isNewEntry) addConstant(op.lexicalEnvironment); instructions[i + 6].u.jsCell.set(vm, this, op.lexicalEnvironment); } else instructions[i + 6].u.symbolTable.set(vm, this, op.lexicalEnvironment->symbolTable()); } else if (JSScope* constantScope = JSScope::constantScopeForCodeBlock(op.type, this)) instructions[i + 6].u.jsCell.set(vm, this, constantScope); else instructions[i + 6].u.pointer = nullptr; break; } case op_get_from_scope: { ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; instructions[i + opLength - 1] = profile; // get_from_scope dst, scope, id, GetPutInfo, Structure, Operand int localScopeDepth = pc[5].u.operand; instructions[i + 5].u.pointer = nullptr; GetPutInfo getPutInfo = GetPutInfo(pc[4].u.operand); ASSERT(!isInitialization(getPutInfo.initializationMode())); if (getPutInfo.resolveType() == LocalClosureVar) { instructions[i + 4] = GetPutInfo(getPutInfo.resolveMode(), ClosureVar, getPutInfo.initializationMode()).operand(); break; } const Identifier& ident = identifier(pc[3].u.operand); ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, getPutInfo.resolveType(), InitializationMode::NotInitialization); instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), op.type, getPutInfo.initializationMode()).operand(); if (op.type == ModuleVar) instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), ClosureVar, getPutInfo.initializationMode()).operand(); if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks) instructions[i + 5].u.watchpointSet = op.watchpointSet; else if (op.structure) instructions[i + 5].u.structure.set(vm, this, op.structure); instructions[i + 6].u.pointer = reinterpret_cast(op.operand); break; } case op_put_to_scope: { // put_to_scope scope, id, value, GetPutInfo, Structure, Operand GetPutInfo getPutInfo = GetPutInfo(pc[4].u.operand); if (getPutInfo.resolveType() == LocalClosureVar) { // Only do watching if the property we're putting to is not anonymous. if (static_cast(pc[2].u.operand) != UINT_MAX) { int symbolTableIndex = pc[5].u.operand; SymbolTable* symbolTable = jsCast(getConstant(symbolTableIndex)); const Identifier& ident = identifier(pc[2].u.operand); ConcurrentJITLocker locker(symbolTable->m_lock); auto iter = symbolTable->find(locker, ident.impl()); ASSERT(iter != symbolTable->end(locker)); iter->value.prepareToWatch(); instructions[i + 5].u.watchpointSet = iter->value.watchpointSet(); } else instructions[i + 5].u.watchpointSet = nullptr; break; } const Identifier& ident = identifier(pc[2].u.operand); int localScopeDepth = pc[5].u.operand; instructions[i + 5].u.pointer = nullptr; ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Put, getPutInfo.resolveType(), getPutInfo.initializationMode()); instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), op.type, getPutInfo.initializationMode()).operand(); if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks) instructions[i + 5].u.watchpointSet = op.watchpointSet; else if (op.type == ClosureVar || op.type == ClosureVarWithVarInjectionChecks) { if (op.watchpointSet) op.watchpointSet->invalidate(PutToScopeFireDetail(this, ident)); } else if (op.structure) instructions[i + 5].u.structure.set(vm, this, op.structure); instructions[i + 6].u.pointer = reinterpret_cast(op.operand); break; } case op_profile_type: { RELEASE_ASSERT(vm.typeProfiler()); // The format of this instruction is: op_profile_type regToProfile, TypeLocation*, flag, identifier?, resolveType? size_t instructionOffset = i + opLength - 1; unsigned divotStart, divotEnd; GlobalVariableID globalVariableID = 0; RefPtr globalTypeSet; bool shouldAnalyze = m_unlinkedCode->typeProfilerExpressionInfoForBytecodeOffset(instructionOffset, divotStart, divotEnd); VirtualRegister profileRegister(pc[1].u.operand); ProfileTypeBytecodeFlag flag = static_cast(pc[3].u.operand); SymbolTable* symbolTable = nullptr; switch (flag) { case ProfileTypeBytecodeClosureVar: { const Identifier& ident = identifier(pc[4].u.operand); int localScopeDepth = pc[2].u.operand; ResolveType type = static_cast(pc[5].u.operand); // Even though type profiling may be profiling either a Get or a Put, we can always claim a Get because // we're abstractly "read"ing from a JSScope. ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, type, InitializationMode::NotInitialization); if (op.type == ClosureVar || op.type == ModuleVar) symbolTable = op.lexicalEnvironment->symbolTable(); else if (op.type == GlobalVar) symbolTable = m_globalObject.get()->symbolTable(); UniquedStringImpl* impl = (op.type == ModuleVar) ? op.importedName.get() : ident.impl(); if (symbolTable) { ConcurrentJITLocker locker(symbolTable->m_lock); // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. symbolTable->prepareForTypeProfiling(locker); globalVariableID = symbolTable->uniqueIDForVariable(locker, impl, vm); globalTypeSet = symbolTable->globalTypeSetForVariable(locker, impl, vm); } else globalVariableID = TypeProfilerNoGlobalIDExists; break; } case ProfileTypeBytecodeLocallyResolved: { int symbolTableIndex = pc[2].u.operand; SymbolTable* symbolTable = jsCast(getConstant(symbolTableIndex)); const Identifier& ident = identifier(pc[4].u.operand); ConcurrentJITLocker locker(symbolTable->m_lock); // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. globalVariableID = symbolTable->uniqueIDForVariable(locker, ident.impl(), vm); globalTypeSet = symbolTable->globalTypeSetForVariable(locker, ident.impl(), vm); break; } case ProfileTypeBytecodeDoesNotHaveGlobalID: case ProfileTypeBytecodeFunctionArgument: { globalVariableID = TypeProfilerNoGlobalIDExists; break; } case ProfileTypeBytecodeFunctionReturnStatement: { RELEASE_ASSERT(ownerExecutable->isFunctionExecutable()); globalTypeSet = jsCast(ownerExecutable)->returnStatementTypeSet(); globalVariableID = TypeProfilerReturnStatement; if (!shouldAnalyze) { // Because a return statement can be added implicitly to return undefined at the end of a function, // and these nodes don't emit expression ranges because they aren't in the actual source text of // the user's program, give the type profiler some range to identify these return statements. // Currently, the text offset that is used as identification is "f" in the function keyword // and is stored on TypeLocation's m_divotForFunctionOffsetIfReturnStatement member variable. divotStart = divotEnd = ownerExecutable->typeProfilingStartOffset(); shouldAnalyze = true; } break; } } std::pair locationPair = vm.typeProfiler()->typeLocationCache()->getTypeLocation(globalVariableID, ownerExecutable->sourceID(), divotStart, divotEnd, globalTypeSet, &vm); TypeLocation* location = locationPair.first; bool isNewLocation = locationPair.second; if (flag == ProfileTypeBytecodeFunctionReturnStatement) location->m_divotForFunctionOffsetIfReturnStatement = ownerExecutable->typeProfilingStartOffset(); if (shouldAnalyze && isNewLocation) vm.typeProfiler()->insertNewLocation(location); instructions[i + 2].u.location = location; break; } case op_debug: { if (pc[1].u.index == DidReachBreakpoint) m_hasDebuggerStatement = true; break; } case op_save: { unsigned liveCalleeLocalsIndex = pc[2].u.index; int offset = pc[3].u.operand; if (liveCalleeLocalsIndex >= mergePointBytecodeOffsets.size()) mergePointBytecodeOffsets.resize(liveCalleeLocalsIndex + 1); mergePointBytecodeOffsets[liveCalleeLocalsIndex] = i + offset; break; } default: break; } i += opLength; } if (vm.controlFlowProfiler()) insertBasicBlockBoundariesForControlFlowProfiler(instructions); m_instructions = WTFMove(instructions); // Perform bytecode liveness analysis to determine which locals are live and should be resumed when executing op_resume. if (unlinkedCodeBlock->parseMode() == SourceParseMode::GeneratorBodyMode) { if (size_t count = mergePointBytecodeOffsets.size()) { createRareDataIfNecessary(); BytecodeLivenessAnalysis liveness(this); m_rareData->m_liveCalleeLocalsAtYield.grow(count); size_t liveCalleeLocalsIndex = 0; for (size_t bytecodeOffset : mergePointBytecodeOffsets) { m_rareData->m_liveCalleeLocalsAtYield[liveCalleeLocalsIndex] = liveness.getLivenessInfoAtBytecodeOffset(bytecodeOffset); ++liveCalleeLocalsIndex; } } } // Set optimization thresholds only after m_instructions is initialized, since these // rely on the instruction count (and are in theory permitted to also inspect the // instruction stream to more accurate assess the cost of tier-up). optimizeAfterWarmUp(); jitAfterWarmUp(); // If the concurrent thread will want the code block's hash, then compute it here // synchronously. if (Options::alwaysComputeHash()) hash(); if (Options::dumpGeneratedBytecodes()) dumpBytecode(); heap()->m_codeBlocks.add(this); heap()->reportExtraMemoryAllocated(m_instructions.size() * sizeof(Instruction)); } #if ENABLE(WEBASSEMBLY) CodeBlock::CodeBlock(VM* vm, Structure* structure, WebAssemblyExecutable* ownerExecutable, JSGlobalObject* globalObject) : JSCell(*vm, structure) , m_globalObject(globalObject->vm(), this, globalObject) , m_numCalleeLocals(0) , m_numVars(0) , m_shouldAlwaysBeInlined(false) #if ENABLE(JIT) , m_capabilityLevelState(DFG::CannotCompile) #endif , m_didFailFTLCompilation(false) , m_hasBeenCompiledWithFTL(false) , m_isConstructor(false) , m_isStrictMode(false) , m_codeType(FunctionCode) , m_hasDebuggerStatement(false) , m_steppingMode(SteppingModeDisabled) , m_numBreakpoints(0) , m_ownerExecutable(m_globalObject->vm(), this, ownerExecutable) , m_vm(vm) , m_osrExitCounter(0) , m_optimizationDelayCounter(0) , m_reoptimizationRetryCounter(0) , m_creationTime(std::chrono::steady_clock::now()) { ASSERT(heap()->isDeferred()); } void CodeBlock::finishCreation(VM& vm, WebAssemblyExecutable*, JSGlobalObject*) { Base::finishCreation(vm); heap()->m_codeBlocks.add(this); } #endif CodeBlock::~CodeBlock() { if (m_vm->m_perBytecodeProfiler) m_vm->m_perBytecodeProfiler->notifyDestruction(this); #if ENABLE(VERBOSE_VALUE_PROFILE) dumpValueProfiles(); #endif // We may be destroyed before any CodeBlocks that refer to us are destroyed. // Consider that two CodeBlocks become unreachable at the same time. There // is no guarantee about the order in which the CodeBlocks are destroyed. // So, if we don't remove incoming calls, and get destroyed before the // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's // destructor will try to remove nodes from our (no longer valid) linked list. unlinkIncomingCalls(); // Note that our outgoing calls will be removed from other CodeBlocks' // m_incomingCalls linked lists through the execution of the ~CallLinkInfo // destructors. #if ENABLE(JIT) for (Bag::iterator iter = m_stubInfos.begin(); !!iter; ++iter) { StructureStubInfo* stub = *iter; stub->aboutToDie(); stub->deref(); } #endif // ENABLE(JIT) } void CodeBlock::setConstantRegisters(const Vector>& constants, const Vector& constantsSourceCodeRepresentation) { ASSERT(constants.size() == constantsSourceCodeRepresentation.size()); size_t count = constants.size(); m_constantRegisters.resizeToFit(count); bool hasTypeProfiler = !!m_vm->typeProfiler(); for (size_t i = 0; i < count; i++) { JSValue constant = constants[i].get(); if (!constant.isEmpty()) { if (SymbolTable* symbolTable = jsDynamicCast(constant)) { if (hasTypeProfiler) { ConcurrentJITLocker locker(symbolTable->m_lock); symbolTable->prepareForTypeProfiling(locker); } constant = symbolTable->cloneScopePart(*m_vm); } } m_constantRegisters[i].set(*m_vm, this, constant); } m_constantsSourceCodeRepresentation = constantsSourceCodeRepresentation; } void CodeBlock::setAlternative(VM& vm, CodeBlock* alternative) { m_alternative.set(vm, this, alternative); } void CodeBlock::setNumParameters(int newValue) { m_numParameters = newValue; m_argumentValueProfiles = RefCountedArray(newValue); } void EvalCodeCache::visitAggregate(SlotVisitor& visitor) { EvalCacheMap::iterator end = m_cacheMap.end(); for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr) visitor.append(&ptr->value); } CodeBlock* CodeBlock::specialOSREntryBlockOrNull() { #if ENABLE(FTL_JIT) if (jitType() != JITCode::DFGJIT) return 0; DFG::JITCode* jitCode = m_jitCode->dfg(); return jitCode->osrEntryBlock(); #else // ENABLE(FTL_JIT) return 0; #endif // ENABLE(FTL_JIT) } void CodeBlock::visitWeakly(SlotVisitor& visitor) { bool setByMe = m_visitWeaklyHasBeenCalled.compareExchangeStrong(false, true); if (!setByMe) return; if (Heap::isMarked(this)) return; if (shouldVisitStrongly()) { visitor.appendUnbarrieredReadOnlyPointer(this); return; } // There are two things that may use unconditional finalizers: inline cache clearing // and jettisoning. The probability of us wanting to do at least one of those things // is probably quite close to 1. So we add one no matter what and when it runs, it // figures out whether it has any work to do. visitor.addUnconditionalFinalizer(&m_unconditionalFinalizer); if (!JITCode::isOptimizingJIT(jitType())) return; // If we jettison ourselves we'll install our alternative, so make sure that it // survives GC even if we don't. visitor.append(&m_alternative); // There are two things that we use weak reference harvesters for: DFG fixpoint for // jettisoning, and trying to find structures that would be live based on some // inline cache. So it makes sense to register them regardless. visitor.addWeakReferenceHarvester(&m_weakReferenceHarvester); #if ENABLE(DFG_JIT) // We get here if we're live in the sense that our owner executable is live, // but we're not yet live for sure in another sense: we may yet decide that this // code block should be jettisoned based on its outgoing weak references being // stale. Set a flag to indicate that we're still assuming that we're dead, and // perform one round of determining if we're live. The GC may determine, based on // either us marking additional objects, or by other objects being marked for // other reasons, that this iteration should run again; it will notify us of this // decision by calling harvestWeakReferences(). m_allTransitionsHaveBeenMarked = false; propagateTransitions(visitor); m_jitCode->dfgCommon()->livenessHasBeenProved = false; determineLiveness(visitor); #endif // ENABLE(DFG_JIT) } size_t CodeBlock::estimatedSize(JSCell* cell) { CodeBlock* thisObject = jsCast(cell); size_t extraMemoryAllocated = thisObject->m_instructions.size() * sizeof(Instruction); if (thisObject->m_jitCode) extraMemoryAllocated += thisObject->m_jitCode->size(); return Base::estimatedSize(cell) + extraMemoryAllocated; } void CodeBlock::visitChildren(JSCell* cell, SlotVisitor& visitor) { CodeBlock* thisObject = jsCast(cell); ASSERT_GC_OBJECT_INHERITS(thisObject, info()); JSCell::visitChildren(thisObject, visitor); thisObject->visitChildren(visitor); } void CodeBlock::visitChildren(SlotVisitor& visitor) { // There are two things that may use unconditional finalizers: inline cache clearing // and jettisoning. The probability of us wanting to do at least one of those things // is probably quite close to 1. So we add one no matter what and when it runs, it // figures out whether it has any work to do. visitor.addUnconditionalFinalizer(&m_unconditionalFinalizer); if (CodeBlock* otherBlock = specialOSREntryBlockOrNull()) visitor.appendUnbarrieredReadOnlyPointer(otherBlock); if (m_jitCode) visitor.reportExtraMemoryVisited(m_jitCode->size()); if (m_instructions.size()) visitor.reportExtraMemoryVisited(m_instructions.size() * sizeof(Instruction) / m_instructions.refCount()); stronglyVisitStrongReferences(visitor); stronglyVisitWeakReferences(visitor); m_allTransitionsHaveBeenMarked = false; propagateTransitions(visitor); } bool CodeBlock::shouldVisitStrongly() { if (Options::forceCodeBlockLiveness()) return true; if (shouldJettisonDueToOldAge()) return false; // Interpreter and Baseline JIT CodeBlocks don't need to be jettisoned when // their weak references go stale. So if a basline JIT CodeBlock gets // scanned, we can assume that this means that it's live. if (!JITCode::isOptimizingJIT(jitType())) return true; return false; } bool CodeBlock::shouldJettisonDueToWeakReference() { if (!JITCode::isOptimizingJIT(jitType())) return false; return !Heap::isMarked(this); } bool CodeBlock::shouldJettisonDueToOldAge() { return false; } #if ENABLE(DFG_JIT) static bool shouldMarkTransition(DFG::WeakReferenceTransition& transition) { if (transition.m_codeOrigin && !Heap::isMarked(transition.m_codeOrigin.get())) return false; if (!Heap::isMarked(transition.m_from.get())) return false; return true; } #endif // ENABLE(DFG_JIT) void CodeBlock::propagateTransitions(SlotVisitor& visitor) { UNUSED_PARAM(visitor); if (m_allTransitionsHaveBeenMarked) return; bool allAreMarkedSoFar = true; Interpreter* interpreter = m_vm->interpreter; if (jitType() == JITCode::InterpreterThunk) { const Vector& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); for (size_t i = 0; i < propertyAccessInstructions.size(); ++i) { Instruction* instruction = &instructions()[propertyAccessInstructions[i]]; switch (interpreter->getOpcodeID(instruction[0].u.opcode)) { case op_put_by_id: { StructureID oldStructureID = instruction[4].u.structureID; StructureID newStructureID = instruction[6].u.structureID; if (!oldStructureID || !newStructureID) break; Structure* oldStructure = m_vm->heap.structureIDTable().get(oldStructureID); Structure* newStructure = m_vm->heap.structureIDTable().get(newStructureID); if (Heap::isMarked(oldStructure)) visitor.appendUnbarrieredReadOnlyPointer(newStructure); else allAreMarkedSoFar = false; break; } default: break; } } } #if ENABLE(JIT) if (JITCode::isJIT(jitType())) { for (Bag::iterator iter = m_stubInfos.begin(); !!iter; ++iter) allAreMarkedSoFar &= (*iter)->propagateTransitions(visitor); } #endif // ENABLE(JIT) #if ENABLE(DFG_JIT) if (JITCode::isOptimizingJIT(jitType())) { DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); for (auto& weakReference : dfgCommon->weakStructureReferences) allAreMarkedSoFar &= weakReference->markIfCheap(visitor); for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { if (shouldMarkTransition(dfgCommon->transitions[i])) { // If the following three things are live, then the target of the // transition is also live: // // - This code block. We know it's live already because otherwise // we wouldn't be scanning ourselves. // // - The code origin of the transition. Transitions may arise from // code that was inlined. They are not relevant if the user's // object that is required for the inlinee to run is no longer // live. // // - The source of the transition. The transition checks if some // heap location holds the source, and if so, stores the target. // Hence the source must be live for the transition to be live. // // We also short-circuit the liveness if the structure is harmless // to mark (i.e. its global object and prototype are both already // live). visitor.append(&dfgCommon->transitions[i].m_to); } else allAreMarkedSoFar = false; } } #endif // ENABLE(DFG_JIT) if (allAreMarkedSoFar) m_allTransitionsHaveBeenMarked = true; } void CodeBlock::determineLiveness(SlotVisitor& visitor) { UNUSED_PARAM(visitor); #if ENABLE(DFG_JIT) // Check if we have any remaining work to do. DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); if (dfgCommon->livenessHasBeenProved) return; // Now check all of our weak references. If all of them are live, then we // have proved liveness and so we scan our strong references. If at end of // GC we still have not proved liveness, then this code block is toast. bool allAreLiveSoFar = true; for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { if (!Heap::isMarked(dfgCommon->weakReferences[i].get())) { allAreLiveSoFar = false; break; } } if (allAreLiveSoFar) { for (unsigned i = 0; i < dfgCommon->weakStructureReferences.size(); ++i) { if (!Heap::isMarked(dfgCommon->weakStructureReferences[i].get())) { allAreLiveSoFar = false; break; } } } // If some weak references are dead, then this fixpoint iteration was // unsuccessful. if (!allAreLiveSoFar) return; // All weak references are live. Record this information so we don't // come back here again, and scan the strong references. dfgCommon->livenessHasBeenProved = true; visitor.appendUnbarrieredReadOnlyPointer(this); #endif // ENABLE(DFG_JIT) } void CodeBlock::WeakReferenceHarvester::visitWeakReferences(SlotVisitor& visitor) { CodeBlock* codeBlock = bitwise_cast( bitwise_cast(this) - OBJECT_OFFSETOF(CodeBlock, m_weakReferenceHarvester)); codeBlock->propagateTransitions(visitor); codeBlock->determineLiveness(visitor); } void CodeBlock::finalizeLLIntInlineCaches() { #if ENABLE(WEBASSEMBLY) if (m_ownerExecutable->isWebAssemblyExecutable()) return; #endif Interpreter* interpreter = m_vm->interpreter; const Vector& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) { Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]]; switch (interpreter->getOpcodeID(curInstruction[0].u.opcode)) { case op_get_by_id: case op_get_by_id_proto_load: case op_get_by_id_unset: { StructureID oldStructureID = curInstruction[4].u.structureID; if (!oldStructureID || Heap::isMarked(m_vm->heap.structureIDTable().get(oldStructureID))) break; if (Options::verboseOSR()) dataLogF("Clearing LLInt property access.\n"); clearLLIntGetByIdCache(curInstruction); break; } case op_put_by_id: { StructureID oldStructureID = curInstruction[4].u.structureID; StructureID newStructureID = curInstruction[6].u.structureID; StructureChain* chain = curInstruction[7].u.structureChain.get(); if ((!oldStructureID || Heap::isMarked(m_vm->heap.structureIDTable().get(oldStructureID))) && (!newStructureID || Heap::isMarked(m_vm->heap.structureIDTable().get(newStructureID))) && (!chain || Heap::isMarked(chain))) break; if (Options::verboseOSR()) dataLogF("Clearing LLInt put transition.\n"); curInstruction[4].u.structureID = 0; curInstruction[5].u.operand = 0; curInstruction[6].u.structureID = 0; curInstruction[7].u.structureChain.clear(); break; } case op_get_array_length: break; case op_to_this: if (!curInstruction[2].u.structure || Heap::isMarked(curInstruction[2].u.structure.get())) break; if (Options::verboseOSR()) dataLogF("Clearing LLInt to_this with structure %p.\n", curInstruction[2].u.structure.get()); curInstruction[2].u.structure.clear(); curInstruction[3].u.toThisStatus = merge( curInstruction[3].u.toThisStatus, ToThisClearedByGC); break; case op_create_this: { auto& cacheWriteBarrier = curInstruction[4].u.jsCell; if (!cacheWriteBarrier || cacheWriteBarrier.unvalidatedGet() == JSCell::seenMultipleCalleeObjects()) break; JSCell* cachedFunction = cacheWriteBarrier.get(); if (Heap::isMarked(cachedFunction)) break; if (Options::verboseOSR()) dataLogF("Clearing LLInt create_this with cached callee %p.\n", cachedFunction); cacheWriteBarrier.clear(); break; } case op_resolve_scope: { // Right now this isn't strictly necessary. Any symbol tables that this will refer to // are for outer functions, and we refer to those functions strongly, and they refer // to the symbol table strongly. But it's nice to be on the safe side. WriteBarrierBase& symbolTable = curInstruction[6].u.symbolTable; if (!symbolTable || Heap::isMarked(symbolTable.get())) break; if (Options::verboseOSR()) dataLogF("Clearing dead symbolTable %p.\n", symbolTable.get()); symbolTable.clear(); break; } case op_get_from_scope: case op_put_to_scope: { GetPutInfo getPutInfo = GetPutInfo(curInstruction[4].u.operand); if (getPutInfo.resolveType() == GlobalVar || getPutInfo.resolveType() == GlobalVarWithVarInjectionChecks || getPutInfo.resolveType() == LocalClosureVar || getPutInfo.resolveType() == GlobalLexicalVar || getPutInfo.resolveType() == GlobalLexicalVarWithVarInjectionChecks) continue; WriteBarrierBase& structure = curInstruction[5].u.structure; if (!structure || Heap::isMarked(structure.get())) break; if (Options::verboseOSR()) dataLogF("Clearing scope access with structure %p.\n", structure.get()); structure.clear(); break; } default: OpcodeID opcodeID = interpreter->getOpcodeID(curInstruction[0].u.opcode); ASSERT_WITH_MESSAGE_UNUSED(opcodeID, false, "Unhandled opcode in CodeBlock::finalizeUnconditionally, %s(%d) at bc %u", opcodeNames[opcodeID], opcodeID, propertyAccessInstructions[i]); } } // We can't just remove all the sets when we clear the caches since we might have created a watchpoint set // then cleared the cache without GCing in between. m_llintGetByIdWatchpointMap.removeIf([](const StructureWatchpointMap::KeyValuePairType& pair) -> bool { return !Heap::isMarked(pair.key); }); for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) { if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) { if (Options::verboseOSR()) dataLog("Clearing LLInt call from ", *this, "\n"); m_llintCallLinkInfos[i].unlink(); } if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get())) m_llintCallLinkInfos[i].lastSeenCallee.clear(); } } void CodeBlock::finalizeBaselineJITInlineCaches() { #if ENABLE(JIT) for (auto iter = callLinkInfosBegin(); !!iter; ++iter) (*iter)->visitWeak(*vm()); for (Bag::iterator iter = m_stubInfos.begin(); !!iter; ++iter) { StructureStubInfo& stubInfo = **iter; stubInfo.visitWeakReferences(this); } #endif } void CodeBlock::UnconditionalFinalizer::finalizeUnconditionally() { CodeBlock* codeBlock = bitwise_cast( bitwise_cast(this) - OBJECT_OFFSETOF(CodeBlock, m_unconditionalFinalizer)); #if ENABLE(DFG_JIT) if (codeBlock->shouldJettisonDueToWeakReference()) { codeBlock->jettison(Profiler::JettisonDueToWeakReference); return; } #endif // ENABLE(DFG_JIT) if (codeBlock->shouldJettisonDueToOldAge()) { codeBlock->jettison(Profiler::JettisonDueToOldAge); return; } if (JITCode::couldBeInterpreted(codeBlock->jitType())) codeBlock->finalizeLLIntInlineCaches(); #if ENABLE(JIT) if (!!codeBlock->jitCode()) codeBlock->finalizeBaselineJITInlineCaches(); #endif } void CodeBlock::getStubInfoMap(const ConcurrentJITLocker&, StubInfoMap& result) { #if ENABLE(JIT) toHashMap(m_stubInfos, getStructureStubInfoCodeOrigin, result); #else UNUSED_PARAM(result); #endif } void CodeBlock::getStubInfoMap(StubInfoMap& result) { ConcurrentJITLocker locker(m_lock); getStubInfoMap(locker, result); } void CodeBlock::getCallLinkInfoMap(const ConcurrentJITLocker&, CallLinkInfoMap& result) { #if ENABLE(JIT) toHashMap(m_callLinkInfos, getCallLinkInfoCodeOrigin, result); #else UNUSED_PARAM(result); #endif } void CodeBlock::getCallLinkInfoMap(CallLinkInfoMap& result) { ConcurrentJITLocker locker(m_lock); getCallLinkInfoMap(locker, result); } void CodeBlock::getByValInfoMap(const ConcurrentJITLocker&, ByValInfoMap& result) { #if ENABLE(JIT) for (auto* byValInfo : m_byValInfos) result.add(CodeOrigin(byValInfo->bytecodeIndex), byValInfo); #else UNUSED_PARAM(result); #endif } void CodeBlock::getByValInfoMap(ByValInfoMap& result) { ConcurrentJITLocker locker(m_lock); getByValInfoMap(locker, result); } #if ENABLE(JIT) StructureStubInfo* CodeBlock::addStubInfo(AccessType accessType) { ConcurrentJITLocker locker(m_lock); return m_stubInfos.add(accessType); } StructureStubInfo* CodeBlock::findStubInfo(CodeOrigin codeOrigin) { for (StructureStubInfo* stubInfo : m_stubInfos) { if (stubInfo->codeOrigin == codeOrigin) return stubInfo; } return nullptr; } ByValInfo* CodeBlock::addByValInfo() { ConcurrentJITLocker locker(m_lock); return m_byValInfos.add(); } CallLinkInfo* CodeBlock::addCallLinkInfo() { ConcurrentJITLocker locker(m_lock); return m_callLinkInfos.add(); } CallLinkInfo* CodeBlock::getCallLinkInfoForBytecodeIndex(unsigned index) { for (auto iter = m_callLinkInfos.begin(); !!iter; ++iter) { if ((*iter)->codeOrigin() == CodeOrigin(index)) return *iter; } return nullptr; } #endif void CodeBlock::visitOSRExitTargets(SlotVisitor& visitor) { // We strongly visit OSR exits targets because we don't want to deal with // the complexity of generating an exit target CodeBlock on demand and // guaranteeing that it matches the details of the CodeBlock we compiled // the OSR exit against. visitor.append(&m_alternative); #if ENABLE(DFG_JIT) DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); if (dfgCommon->inlineCallFrames) { for (auto* inlineCallFrame : *dfgCommon->inlineCallFrames) { ASSERT(inlineCallFrame->baselineCodeBlock); visitor.append(&inlineCallFrame->baselineCodeBlock); } } #endif } void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor) { visitor.append(&m_globalObject); visitor.append(&m_ownerExecutable); visitor.append(&m_unlinkedCode); if (m_rareData) m_rareData->m_evalCodeCache.visitAggregate(visitor); visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); for (size_t i = 0; i < m_functionExprs.size(); ++i) visitor.append(&m_functionExprs[i]); for (size_t i = 0; i < m_functionDecls.size(); ++i) visitor.append(&m_functionDecls[i]); for (unsigned i = 0; i < m_objectAllocationProfiles.size(); ++i) m_objectAllocationProfiles[i].visitAggregate(visitor); #if ENABLE(DFG_JIT) if (JITCode::isOptimizingJIT(jitType())) visitOSRExitTargets(visitor); #endif updateAllPredictions(); } void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor) { UNUSED_PARAM(visitor); #if ENABLE(DFG_JIT) if (!JITCode::isOptimizingJIT(jitType())) return; DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { if (!!dfgCommon->transitions[i].m_codeOrigin) visitor.append(&dfgCommon->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. visitor.append(&dfgCommon->transitions[i].m_from); visitor.append(&dfgCommon->transitions[i].m_to); } for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) visitor.append(&dfgCommon->weakReferences[i]); for (unsigned i = 0; i < dfgCommon->weakStructureReferences.size(); ++i) visitor.append(&dfgCommon->weakStructureReferences[i]); dfgCommon->livenessHasBeenProved = true; #endif } CodeBlock* CodeBlock::baselineAlternative() { #if ENABLE(JIT) CodeBlock* result = this; while (result->alternative()) result = result->alternative(); RELEASE_ASSERT(result); RELEASE_ASSERT(JITCode::isBaselineCode(result->jitType()) || result->jitType() == JITCode::None); return result; #else return this; #endif } CodeBlock* CodeBlock::baselineVersion() { #if ENABLE(JIT) if (JITCode::isBaselineCode(jitType())) return this; CodeBlock* result = replacement(); if (!result) { // This can happen if we're creating the original CodeBlock for an executable. // Assume that we're the baseline CodeBlock. RELEASE_ASSERT(jitType() == JITCode::None); return this; } result = result->baselineAlternative(); return result; #else return this; #endif } #if ENABLE(JIT) bool CodeBlock::hasOptimizedReplacement(JITCode::JITType typeToReplace) { return JITCode::isHigherTier(replacement()->jitType(), typeToReplace); } bool CodeBlock::hasOptimizedReplacement() { return hasOptimizedReplacement(jitType()); } #endif HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset, RequiredHandler requiredHandler) { RELEASE_ASSERT(bytecodeOffset < instructions().size()); return handlerForIndex(bytecodeOffset, requiredHandler); } HandlerInfo* CodeBlock::handlerForIndex(unsigned index, RequiredHandler requiredHandler) { if (!m_rareData) return 0; Vector& exceptionHandlers = m_rareData->m_exceptionHandlers; for (size_t i = 0; i < exceptionHandlers.size(); ++i) { HandlerInfo& handler = exceptionHandlers[i]; if ((requiredHandler == RequiredHandler::CatchHandler) && !handler.isCatchHandler()) continue; // Handlers are ordered innermost first, so the first handler we encounter // that contains the source address is the correct handler to use. // This index used is either the BytecodeOffset or a CallSiteIndex. if (handler.start <= index && handler.end > index) return &handler; } return 0; } CallSiteIndex CodeBlock::newExceptionHandlingCallSiteIndex(CallSiteIndex originalCallSite) { #if ENABLE(DFG_JIT) RELEASE_ASSERT(JITCode::isOptimizingJIT(jitType())); RELEASE_ASSERT(canGetCodeOrigin(originalCallSite)); ASSERT(!!handlerForIndex(originalCallSite.bits())); CodeOrigin originalOrigin = codeOrigin(originalCallSite); return m_jitCode->dfgCommon()->addUniqueCallSiteIndex(originalOrigin); #else // We never create new on-the-fly exception handling // call sites outside the DFG/FTL inline caches. UNUSED_PARAM(originalCallSite); RELEASE_ASSERT_NOT_REACHED(); return CallSiteIndex(0u); #endif } void CodeBlock::removeExceptionHandlerForCallSite(CallSiteIndex callSiteIndex) { RELEASE_ASSERT(m_rareData); Vector& exceptionHandlers = m_rareData->m_exceptionHandlers; unsigned index = callSiteIndex.bits(); for (size_t i = 0; i < exceptionHandlers.size(); ++i) { HandlerInfo& handler = exceptionHandlers[i]; if (handler.start <= index && handler.end > index) { exceptionHandlers.remove(i); return; } } RELEASE_ASSERT_NOT_REACHED(); } unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) { RELEASE_ASSERT(bytecodeOffset < instructions().size()); return ownerScriptExecutable()->firstLine() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset); } unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset) { int divot; int startOffset; int endOffset; unsigned line; unsigned column; expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); return column; } void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column) const { m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); divot += m_sourceOffset; column += line ? 1 : firstLineColumnOffset(); line += ownerScriptExecutable()->firstLine(); } bool CodeBlock::hasOpDebugForLineAndColumn(unsigned line, unsigned column) { Interpreter* interpreter = vm()->interpreter; const Instruction* begin = instructions().begin(); const Instruction* end = instructions().end(); for (const Instruction* it = begin; it != end;) { OpcodeID opcodeID = interpreter->getOpcodeID(it->u.opcode); if (opcodeID == op_debug) { unsigned bytecodeOffset = it - begin; int unused; unsigned opDebugLine; unsigned opDebugColumn; expressionRangeForBytecodeOffset(bytecodeOffset, unused, unused, unused, opDebugLine, opDebugColumn); if (line == opDebugLine && (column == Breakpoint::unspecifiedColumn || column == opDebugColumn)) return true; } it += opcodeLengths[opcodeID]; } return false; } void CodeBlock::shrinkToFit(ShrinkMode shrinkMode) { m_rareCaseProfiles.shrinkToFit(); m_resultProfiles.shrinkToFit(); if (shrinkMode == EarlyShrink) { m_constantRegisters.shrinkToFit(); m_constantsSourceCodeRepresentation.shrinkToFit(); if (m_rareData) { m_rareData->m_switchJumpTables.shrinkToFit(); m_rareData->m_stringSwitchJumpTables.shrinkToFit(); m_rareData->m_liveCalleeLocalsAtYield.shrinkToFit(); } } // else don't shrink these, because we would have already pointed pointers into these tables. } #if ENABLE(JIT) void CodeBlock::linkIncomingCall(ExecState* callerFrame, CallLinkInfo* incoming) { noticeIncomingCall(callerFrame); m_incomingCalls.push(incoming); } void CodeBlock::linkIncomingPolymorphicCall(ExecState* callerFrame, PolymorphicCallNode* incoming) { noticeIncomingCall(callerFrame); m_incomingPolymorphicCalls.push(incoming); } #endif // ENABLE(JIT) void CodeBlock::unlinkIncomingCalls() { while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) m_incomingLLIntCalls.begin()->unlink(); #if ENABLE(JIT) while (m_incomingCalls.begin() != m_incomingCalls.end()) m_incomingCalls.begin()->unlink(*vm()); while (m_incomingPolymorphicCalls.begin() != m_incomingPolymorphicCalls.end()) m_incomingPolymorphicCalls.begin()->unlink(*vm()); #endif // ENABLE(JIT) } void CodeBlock::linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo* incoming) { noticeIncomingCall(callerFrame); m_incomingLLIntCalls.push(incoming); } CodeBlock* CodeBlock::newReplacement() { return ownerScriptExecutable()->newReplacementCodeBlockFor(specializationKind()); } #if ENABLE(JIT) CodeBlock* CodeBlock::replacement() { const ClassInfo* classInfo = this->classInfo(); if (classInfo == FunctionCodeBlock::info()) return jsCast(ownerExecutable())->codeBlockFor(m_isConstructor ? CodeForConstruct : CodeForCall); if (classInfo == EvalCodeBlock::info()) return jsCast(ownerExecutable())->codeBlock(); if (classInfo == ProgramCodeBlock::info()) return jsCast(ownerExecutable())->codeBlock(); if (classInfo == ModuleProgramCodeBlock::info()) return jsCast(ownerExecutable())->codeBlock(); #if ENABLE(WEBASSEMBLY) if (classInfo == WebAssemblyCodeBlock::info()) return nullptr; #endif RELEASE_ASSERT_NOT_REACHED(); return nullptr; } DFG::CapabilityLevel CodeBlock::computeCapabilityLevel() { const ClassInfo* classInfo = this->classInfo(); if (classInfo == FunctionCodeBlock::info()) { if (m_isConstructor) return DFG::functionForConstructCapabilityLevel(this); return DFG::functionForCallCapabilityLevel(this); } if (classInfo == EvalCodeBlock::info()) return DFG::evalCapabilityLevel(this); if (classInfo == ProgramCodeBlock::info()) return DFG::programCapabilityLevel(this); if (classInfo == ModuleProgramCodeBlock::info()) return DFG::programCapabilityLevel(this); #if ENABLE(WEBASSEMBLY) if (classInfo == WebAssemblyCodeBlock::info()) return DFG::CannotCompile; #endif RELEASE_ASSERT_NOT_REACHED(); return DFG::CannotCompile; } #endif // ENABLE(JIT) void CodeBlock::jettison(Profiler::JettisonReason reason, ReoptimizationMode mode, const FireDetail* detail) { #if !ENABLE(DFG_JIT) UNUSED_PARAM(mode); UNUSED_PARAM(detail); #endif CODEBLOCK_LOG_EVENT(this, "jettison", ("due to ", reason, ", counting = ", mode == CountReoptimization, ", detail = ", pointerDump(detail))); RELEASE_ASSERT(reason != Profiler::NotJettisoned); #if ENABLE(DFG_JIT) if (DFG::shouldDumpDisassembly()) { dataLog("Jettisoning ", *this); if (mode == CountReoptimization) dataLog(" and counting reoptimization"); dataLog(" due to ", reason); if (detail) dataLog(", ", *detail); dataLog(".\n"); } if (reason == Profiler::JettisonDueToWeakReference) { if (DFG::shouldDumpDisassembly()) { dataLog(*this, " will be jettisoned because of the following dead references:\n"); DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { DFG::WeakReferenceTransition& transition = dfgCommon->transitions[i]; JSCell* origin = transition.m_codeOrigin.get(); JSCell* from = transition.m_from.get(); JSCell* to = transition.m_to.get(); if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from)) continue; dataLog(" Transition under ", RawPointer(origin), ", ", RawPointer(from), " -> ", RawPointer(to), ".\n"); } for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { JSCell* weak = dfgCommon->weakReferences[i].get(); if (Heap::isMarked(weak)) continue; dataLog(" Weak reference ", RawPointer(weak), ".\n"); } } } #endif // ENABLE(DFG_JIT) DeferGCForAWhile deferGC(*heap()); // We want to accomplish two things here: // 1) Make sure that if this CodeBlock is on the stack right now, then if we return to it // we should OSR exit at the top of the next bytecode instruction after the return. // 2) Make sure that if we call the owner executable, then we shouldn't call this CodeBlock. #if ENABLE(DFG_JIT) if (reason != Profiler::JettisonDueToOldAge) { if (Profiler::Compilation* compilation = jitCode()->dfgCommon()->compilation.get()) compilation->setJettisonReason(reason, detail); // This accomplishes (1), and does its own book-keeping about whether it has already happened. if (!jitCode()->dfgCommon()->invalidate()) { // We've already been invalidated. RELEASE_ASSERT(this != replacement()); return; } } if (DFG::shouldDumpDisassembly()) dataLog(" Did invalidate ", *this, "\n"); // Count the reoptimization if that's what the user wanted. if (mode == CountReoptimization) { // FIXME: Maybe this should call alternative(). // https://bugs.webkit.org/show_bug.cgi?id=123677 baselineAlternative()->countReoptimization(); if (DFG::shouldDumpDisassembly()) dataLog(" Did count reoptimization for ", *this, "\n"); } if (this != replacement()) { // This means that we were never the entrypoint. This can happen for OSR entry code // blocks. return; } if (alternative()) alternative()->optimizeAfterWarmUp(); if (reason != Profiler::JettisonDueToOldAge) tallyFrequentExitSites(); #endif // ENABLE(DFG_JIT) // This accomplishes (2). ownerScriptExecutable()->installCode( m_globalObject->vm(), alternative(), codeType(), specializationKind()); #if ENABLE(DFG_JIT) if (DFG::shouldDumpDisassembly()) dataLog(" Did install baseline version of ", *this, "\n"); #endif // ENABLE(DFG_JIT) } JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin) { if (!codeOrigin.inlineCallFrame) return globalObject(); return codeOrigin.inlineCallFrame->baselineCodeBlock->globalObject(); } class RecursionCheckFunctor { public: RecursionCheckFunctor(CallFrame* startCallFrame, CodeBlock* codeBlock, unsigned depthToCheck) : m_startCallFrame(startCallFrame) , m_codeBlock(codeBlock) , m_depthToCheck(depthToCheck) , m_foundStartCallFrame(false) , m_didRecurse(false) { } StackVisitor::Status operator()(StackVisitor& visitor) const { CallFrame* currentCallFrame = visitor->callFrame(); if (currentCallFrame == m_startCallFrame) m_foundStartCallFrame = true; if (m_foundStartCallFrame) { if (visitor->callFrame()->codeBlock() == m_codeBlock) { m_didRecurse = true; return StackVisitor::Done; } if (!m_depthToCheck--) return StackVisitor::Done; } return StackVisitor::Continue; } bool didRecurse() const { return m_didRecurse; } private: CallFrame* m_startCallFrame; CodeBlock* m_codeBlock; mutable unsigned m_depthToCheck; mutable bool m_foundStartCallFrame; mutable bool m_didRecurse; }; void CodeBlock::noticeIncomingCall(ExecState* callerFrame) { CodeBlock* callerCodeBlock = callerFrame->codeBlock(); if (Options::verboseCallLink()) dataLog("Noticing call link from ", pointerDump(callerCodeBlock), " to ", *this, "\n"); #if ENABLE(DFG_JIT) if (!m_shouldAlwaysBeInlined) return; if (!callerCodeBlock) { m_shouldAlwaysBeInlined = false; if (Options::verboseCallLink()) dataLog(" Clearing SABI because caller is native.\n"); return; } if (!hasBaselineJITProfiling()) return; if (!DFG::mightInlineFunction(this)) return; if (!canInline(capabilityLevelState())) return; if (!DFG::isSmallEnoughToInlineCodeInto(callerCodeBlock)) { m_shouldAlwaysBeInlined = false; if (Options::verboseCallLink()) dataLog(" Clearing SABI because caller is too large.\n"); return; } if (callerCodeBlock->jitType() == JITCode::InterpreterThunk) { // If the caller is still in the interpreter, then we can't expect inlining to // happen anytime soon. Assume it's profitable to optimize it separately. This // ensures that a function is SABI only if it is called no more frequently than // any of its callers. m_shouldAlwaysBeInlined = false; if (Options::verboseCallLink()) dataLog(" Clearing SABI because caller is in LLInt.\n"); return; } if (JITCode::isOptimizingJIT(callerCodeBlock->jitType())) { m_shouldAlwaysBeInlined = false; if (Options::verboseCallLink()) dataLog(" Clearing SABI bcause caller was already optimized.\n"); return; } if (callerCodeBlock->codeType() != FunctionCode) { // If the caller is either eval or global code, assume that that won't be // optimized anytime soon. For eval code this is particularly true since we // delay eval optimization by a *lot*. m_shouldAlwaysBeInlined = false; if (Options::verboseCallLink()) dataLog(" Clearing SABI because caller is not a function.\n"); return; } // Recursive calls won't be inlined. RecursionCheckFunctor functor(callerFrame, this, Options::maximumInliningDepth()); vm()->topCallFrame->iterate(functor); if (functor.didRecurse()) { if (Options::verboseCallLink()) dataLog(" Clearing SABI because recursion was detected.\n"); m_shouldAlwaysBeInlined = false; return; } if (callerCodeBlock->capabilityLevelState() == DFG::CapabilityLevelNotSet) { dataLog("In call from ", *callerCodeBlock, " ", callerFrame->codeOrigin(), " to ", *this, ": caller's DFG capability level is not set.\n"); CRASH(); } if (canCompile(callerCodeBlock->capabilityLevelState())) return; if (Options::verboseCallLink()) dataLog(" Clearing SABI because the caller is not a DFG candidate.\n"); m_shouldAlwaysBeInlined = false; #endif } unsigned CodeBlock::reoptimizationRetryCounter() const { #if ENABLE(JIT) ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax()); return m_reoptimizationRetryCounter; #else return 0; #endif // ENABLE(JIT) } #if ENABLE(JIT) void CodeBlock::setCalleeSaveRegisters(RegisterSet calleeSaveRegisters) { m_calleeSaveRegisters = std::make_unique(calleeSaveRegisters); } void CodeBlock::setCalleeSaveRegisters(std::unique_ptr registerAtOffsetList) { m_calleeSaveRegisters = WTFMove(registerAtOffsetList); } static size_t roundCalleeSaveSpaceAsVirtualRegisters(size_t calleeSaveRegisters) { static const unsigned cpuRegisterSize = sizeof(void*); return (WTF::roundUpToMultipleOf(sizeof(Register), calleeSaveRegisters * cpuRegisterSize) / sizeof(Register)); } size_t CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters() { return roundCalleeSaveSpaceAsVirtualRegisters(numberOfLLIntBaselineCalleeSaveRegisters()); } size_t CodeBlock::calleeSaveSpaceAsVirtualRegisters() { return roundCalleeSaveSpaceAsVirtualRegisters(m_calleeSaveRegisters->size()); } void CodeBlock::countReoptimization() { m_reoptimizationRetryCounter++; if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax()) m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax(); } unsigned CodeBlock::numberOfDFGCompiles() { ASSERT(JITCode::isBaselineCode(jitType())); if (Options::testTheFTL()) { if (m_didFailFTLCompilation) return 1000000; return (m_hasBeenCompiledWithFTL ? 1 : 0) + m_reoptimizationRetryCounter; } return (JITCode::isOptimizingJIT(replacement()->jitType()) ? 1 : 0) + m_reoptimizationRetryCounter; } int32_t CodeBlock::codeTypeThresholdMultiplier() const { if (codeType() == EvalCode) return Options::evalThresholdMultiplier(); return 1; } double CodeBlock::optimizationThresholdScalingFactor() { // This expression arises from doing a least-squares fit of // // F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d // // against the data points: // // x F[x_] // 10 0.9 (smallest reasonable code block) // 200 1.0 (typical small-ish code block) // 320 1.2 (something I saw in 3d-cube that I wanted to optimize) // 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize) // 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort) // 10000 6.0 (similar to above) // // I achieve the minimization using the following Mathematica code: // // MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d // // samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}} // // solution = // Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples), // {a, b, c, d}][[2]] // // And the code below (to initialize a, b, c, d) is generated by: // // Print["const double " <> ToString[#[[1]]] <> " = " <> // If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution // // We've long known the following to be true: // - Small code blocks are cheap to optimize and so we should do it sooner rather // than later. // - Large code blocks are expensive to optimize and so we should postpone doing so, // and sometimes have a large enough threshold that we never optimize them. // - The difference in cost is not totally linear because (a) just invoking the // DFG incurs some base cost and (b) for large code blocks there is enough slop // in the correlation between instruction count and the actual compilation cost // that for those large blocks, the instruction count should not have a strong // influence on our threshold. // // I knew the goals but I didn't know how to achieve them; so I picked an interesting // example where the heuristics were right (code block in 3d-cube with instruction // count 320, which got compiled early as it should have been) and one where they were // totally wrong (code block in 3d-cube with instruction count 1268, which was expensive // to compile and didn't run often enough to warrant compilation in my opinion), and // then threw in additional data points that represented my own guess of what our // heuristics should do for some round-numbered examples. // // The expression to which I decided to fit the data arose because I started with an // affine function, and then did two things: put the linear part in an Abs to ensure // that the fit didn't end up choosing a negative value of c (which would result in // the function turning over and going negative for large x) and I threw in a Sqrt // term because Sqrt represents my intution that the function should be more sensitive // to small changes in small values of x, but less sensitive when x gets large. // Note that the current fit essentially eliminates the linear portion of the // expression (c == 0.0). const double a = 0.061504; const double b = 1.02406; const double c = 0.0; const double d = 0.825914; double instructionCount = this->instructionCount(); ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense. double result = d + a * sqrt(instructionCount + b) + c * instructionCount; result *= codeTypeThresholdMultiplier(); if (Options::verboseOSR()) { dataLog( *this, ": instruction count is ", instructionCount, ", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier(), "\n"); } return result; } static int32_t clipThreshold(double threshold) { if (threshold < 1.0) return 1; if (threshold > static_cast(std::numeric_limits::max())) return std::numeric_limits::max(); return static_cast(threshold); } int32_t CodeBlock::adjustedCounterValue(int32_t desiredThreshold) { return clipThreshold( static_cast(desiredThreshold) * optimizationThresholdScalingFactor() * (1 << reoptimizationRetryCounter())); } bool CodeBlock::checkIfOptimizationThresholdReached() { #if ENABLE(DFG_JIT) if (DFG::Worklist* worklist = DFG::existingGlobalDFGWorklistOrNull()) { if (worklist->compilationState(DFG::CompilationKey(this, DFG::DFGMode)) == DFG::Worklist::Compiled) { optimizeNextInvocation(); return true; } } #endif return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this); } void CodeBlock::optimizeNextInvocation() { if (Options::verboseOSR()) dataLog(*this, ": Optimizing next invocation.\n"); m_jitExecuteCounter.setNewThreshold(0, this); } void CodeBlock::dontOptimizeAnytimeSoon() { if (Options::verboseOSR()) dataLog(*this, ": Not optimizing anytime soon.\n"); m_jitExecuteCounter.deferIndefinitely(); } void CodeBlock::optimizeAfterWarmUp() { if (Options::verboseOSR()) dataLog(*this, ": Optimizing after warm-up.\n"); #if ENABLE(DFG_JIT) m_jitExecuteCounter.setNewThreshold( adjustedCounterValue(Options::thresholdForOptimizeAfterWarmUp()), this); #endif } void CodeBlock::optimizeAfterLongWarmUp() { if (Options::verboseOSR()) dataLog(*this, ": Optimizing after long warm-up.\n"); #if ENABLE(DFG_JIT) m_jitExecuteCounter.setNewThreshold( adjustedCounterValue(Options::thresholdForOptimizeAfterLongWarmUp()), this); #endif } void CodeBlock::optimizeSoon() { if (Options::verboseOSR()) dataLog(*this, ": Optimizing soon.\n"); #if ENABLE(DFG_JIT) m_jitExecuteCounter.setNewThreshold( adjustedCounterValue(Options::thresholdForOptimizeSoon()), this); #endif } void CodeBlock::forceOptimizationSlowPathConcurrently() { if (Options::verboseOSR()) dataLog(*this, ": Forcing slow path concurrently.\n"); m_jitExecuteCounter.forceSlowPathConcurrently(); } #if ENABLE(DFG_JIT) void CodeBlock::setOptimizationThresholdBasedOnCompilationResult(CompilationResult result) { JITCode::JITType type = jitType(); if (type != JITCode::BaselineJIT) { dataLog(*this, ": expected to have baseline code but have ", type, "\n"); RELEASE_ASSERT_NOT_REACHED(); } CodeBlock* theReplacement = replacement(); if ((result == CompilationSuccessful) != (theReplacement != this)) { dataLog(*this, ": we have result = ", result, " but "); if (theReplacement == this) dataLog("we are our own replacement.\n"); else dataLog("our replacement is ", pointerDump(theReplacement), "\n"); RELEASE_ASSERT_NOT_REACHED(); } switch (result) { case CompilationSuccessful: RELEASE_ASSERT(JITCode::isOptimizingJIT(replacement()->jitType())); optimizeNextInvocation(); return; case CompilationFailed: dontOptimizeAnytimeSoon(); return; case CompilationDeferred: // We'd like to do dontOptimizeAnytimeSoon() but we cannot because // forceOptimizationSlowPathConcurrently() is inherently racy. It won't // necessarily guarantee anything. So, we make sure that even if that // function ends up being a no-op, we still eventually retry and realize // that we have optimized code ready. optimizeAfterWarmUp(); return; case CompilationInvalidated: // Retry with exponential backoff. countReoptimization(); optimizeAfterWarmUp(); return; } dataLog("Unrecognized result: ", static_cast(result), "\n"); RELEASE_ASSERT_NOT_REACHED(); } #endif uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold) { ASSERT(JITCode::isOptimizingJIT(jitType())); // Compute this the lame way so we don't saturate. This is called infrequently // enough that this loop won't hurt us. unsigned result = desiredThreshold; for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) { unsigned newResult = result << 1; if (newResult < result) return std::numeric_limits::max(); result = newResult; } return result; } uint32_t CodeBlock::exitCountThresholdForReoptimization() { return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier()); } uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop() { return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier()); } bool CodeBlock::shouldReoptimizeNow() { return osrExitCounter() >= exitCountThresholdForReoptimization(); } bool CodeBlock::shouldReoptimizeFromLoopNow() { return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop(); } #endif ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset) { for (unsigned i = 0; i < m_arrayProfiles.size(); ++i) { if (m_arrayProfiles[i].bytecodeOffset() == bytecodeOffset) return &m_arrayProfiles[i]; } return 0; } ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset) { ArrayProfile* result = getArrayProfile(bytecodeOffset); if (result) return result; return addArrayProfile(bytecodeOffset); } #if ENABLE(DFG_JIT) Vector& CodeBlock::codeOrigins() { return m_jitCode->dfgCommon()->codeOrigins; } size_t CodeBlock::numberOfDFGIdentifiers() const { if (!JITCode::isOptimizingJIT(jitType())) return 0; return m_jitCode->dfgCommon()->dfgIdentifiers.size(); } const Identifier& CodeBlock::identifier(int index) const { size_t unlinkedIdentifiers = m_unlinkedCode->numberOfIdentifiers(); if (static_cast(index) < unlinkedIdentifiers) return m_unlinkedCode->identifier(index); ASSERT(JITCode::isOptimizingJIT(jitType())); return m_jitCode->dfgCommon()->dfgIdentifiers[index - unlinkedIdentifiers]; } #endif // ENABLE(DFG_JIT) void CodeBlock::updateAllPredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles) { ConcurrentJITLocker locker(m_lock); numberOfLiveNonArgumentValueProfiles = 0; numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { ValueProfile* profile = getFromAllValueProfiles(i); unsigned numSamples = profile->totalNumberOfSamples(); if (numSamples > ValueProfile::numberOfBuckets) numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. numberOfSamplesInProfiles += numSamples; if (profile->m_bytecodeOffset < 0) { profile->computeUpdatedPrediction(locker); continue; } if (profile->numberOfSamples() || profile->m_prediction != SpecNone) numberOfLiveNonArgumentValueProfiles++; profile->computeUpdatedPrediction(locker); } #if ENABLE(DFG_JIT) m_lazyOperandValueProfiles.computeUpdatedPredictions(locker); #endif } void CodeBlock::updateAllValueProfilePredictions() { unsigned ignoredValue1, ignoredValue2; updateAllPredictionsAndCountLiveness(ignoredValue1, ignoredValue2); } void CodeBlock::updateAllArrayPredictions() { ConcurrentJITLocker locker(m_lock); for (unsigned i = m_arrayProfiles.size(); i--;) m_arrayProfiles[i].computeUpdatedPrediction(locker, this); // Don't count these either, for similar reasons. for (unsigned i = m_arrayAllocationProfiles.size(); i--;) m_arrayAllocationProfiles[i].updateIndexingType(); } void CodeBlock::updateAllPredictions() { #if ENABLE(WEBASSEMBLY) if (m_ownerExecutable->isWebAssemblyExecutable()) return; #endif updateAllValueProfilePredictions(); updateAllArrayPredictions(); } bool CodeBlock::shouldOptimizeNow() { if (Options::verboseOSR()) dataLog("Considering optimizing ", *this, "...\n"); if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay()) return true; updateAllArrayPredictions(); unsigned numberOfLiveNonArgumentValueProfiles; unsigned numberOfSamplesInProfiles; updateAllPredictionsAndCountLiveness(numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles); if (Options::verboseOSR()) { dataLogF( "Profile hotness: %lf (%u / %u), %lf (%u / %u)\n", (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(), (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(), numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles()); } if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate()) && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate()) && static_cast(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay()) return true; ASSERT(m_optimizationDelayCounter < std::numeric_limits::max()); m_optimizationDelayCounter++; optimizeAfterWarmUp(); return false; } #if ENABLE(DFG_JIT) void CodeBlock::tallyFrequentExitSites() { ASSERT(JITCode::isOptimizingJIT(jitType())); ASSERT(alternative()->jitType() == JITCode::BaselineJIT); CodeBlock* profiledBlock = alternative(); switch (jitType()) { case JITCode::DFGJIT: { DFG::JITCode* jitCode = m_jitCode->dfg(); for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { DFG::OSRExit& exit = jitCode->osrExit[i]; exit.considerAddingAsFrequentExitSite(profiledBlock); } break; } #if ENABLE(FTL_JIT) case JITCode::FTLJIT: { // There is no easy way to avoid duplicating this code since the FTL::JITCode::osrExit // vector contains a totally different type, that just so happens to behave like // DFG::JITCode::osrExit. FTL::JITCode* jitCode = m_jitCode->ftl(); for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { FTL::OSRExit& exit = jitCode->osrExit[i]; exit.considerAddingAsFrequentExitSite(profiledBlock); } break; } #endif default: RELEASE_ASSERT_NOT_REACHED(); break; } } #endif // ENABLE(DFG_JIT) #if ENABLE(VERBOSE_VALUE_PROFILE) void CodeBlock::dumpValueProfiles() { dataLog("ValueProfile for ", *this, ":\n"); for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { ValueProfile* profile = getFromAllValueProfiles(i); if (profile->m_bytecodeOffset < 0) { ASSERT(profile->m_bytecodeOffset == -1); dataLogF(" arg = %u: ", i); } else dataLogF(" bc = %d: ", profile->m_bytecodeOffset); if (!profile->numberOfSamples() && profile->m_prediction == SpecNone) { dataLogF("\n"); continue; } profile->dump(WTF::dataFile()); dataLogF("\n"); } dataLog("RareCaseProfile for ", *this, ":\n"); for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) { RareCaseProfile* profile = rareCaseProfile(i); dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); } dataLog("ResultProfile for ", *this, ":\n"); for (unsigned i = 0; i < numberOfResultProfiles(); ++i) { const ResultProfile& profile = *resultProfile(i); dataLog(" bc = ", profile.bytecodeOffset(), ": ", profile, "\n"); } } #endif // ENABLE(VERBOSE_VALUE_PROFILE) unsigned CodeBlock::frameRegisterCount() { switch (jitType()) { case JITCode::InterpreterThunk: return LLInt::frameRegisterCountFor(this); #if ENABLE(JIT) case JITCode::BaselineJIT: return JIT::frameRegisterCountFor(this); #endif // ENABLE(JIT) #if ENABLE(DFG_JIT) case JITCode::DFGJIT: case JITCode::FTLJIT: return jitCode()->dfgCommon()->frameRegisterCount; #endif // ENABLE(DFG_JIT) default: RELEASE_ASSERT_NOT_REACHED(); return 0; } } int CodeBlock::stackPointerOffset() { return virtualRegisterForLocal(frameRegisterCount() - 1).offset(); } size_t CodeBlock::predictedMachineCodeSize() { // This will be called from CodeBlock::CodeBlock before either m_vm or the // instructions have been initialized. It's OK to return 0 because what will really // matter is the recomputation of this value when the slow path is triggered. if (!m_vm) return 0; if (!m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT) return 0; // It's as good of a prediction as we'll get. // Be conservative: return a size that will be an overestimation 84% of the time. double multiplier = m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.mean() + m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.standardDeviation(); // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing // here is OK, since this whole method is just a heuristic. if (multiplier < 0 || multiplier > 1000) return 0; double doubleResult = multiplier * m_instructions.size(); // Be even more paranoid: silently reject values that won't fit into a size_t. If // the function is so huge that we can't even fit it into virtual memory then we // should probably have some other guards in place to prevent us from even getting // to this point. if (doubleResult > std::numeric_limits::max()) return 0; return static_cast(doubleResult); } bool CodeBlock::usesOpcode(OpcodeID opcodeID) { Interpreter* interpreter = vm()->interpreter; Instruction* instructionsBegin = instructions().begin(); unsigned instructionCount = instructions().size(); for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) { switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) { #define DEFINE_OP(curOpcode, length) \ case curOpcode: \ if (curOpcode == opcodeID) \ return true; \ bytecodeOffset += length; \ break; FOR_EACH_OPCODE_ID(DEFINE_OP) #undef DEFINE_OP default: RELEASE_ASSERT_NOT_REACHED(); break; } } return false; } String CodeBlock::nameForRegister(VirtualRegister virtualRegister) { for (unsigned i = 0; i < m_constantRegisters.size(); i++) { if (m_constantRegisters[i].get().isEmpty()) continue; if (SymbolTable* symbolTable = jsDynamicCast(m_constantRegisters[i].get())) { ConcurrentJITLocker locker(symbolTable->m_lock); auto end = symbolTable->end(locker); for (auto ptr = symbolTable->begin(locker); ptr != end; ++ptr) { if (ptr->value.varOffset() == VarOffset(virtualRegister)) { // FIXME: This won't work from the compilation thread. // https://bugs.webkit.org/show_bug.cgi?id=115300 return ptr->key.get(); } } } } if (virtualRegister == thisRegister()) return ASCIILiteral("this"); if (virtualRegister.isArgument()) return String::format("arguments[%3d]", virtualRegister.toArgument()); return ""; } ValueProfile* CodeBlock::valueProfileForBytecodeOffset(int bytecodeOffset) { ValueProfile* result = binarySearch( m_valueProfiles, m_valueProfiles.size(), bytecodeOffset, getValueProfileBytecodeOffset); ASSERT(result->m_bytecodeOffset != -1); ASSERT(instructions()[bytecodeOffset + opcodeLength( m_vm->interpreter->getOpcodeID( instructions()[bytecodeOffset].u.opcode)) - 1].u.profile == result); return result; } void CodeBlock::validate() { BytecodeLivenessAnalysis liveness(this); // Compute directly from scratch so it doesn't effect CodeBlock footprint. FastBitVector liveAtHead = liveness.getLivenessInfoAtBytecodeOffset(0); if (liveAtHead.numBits() != static_cast(m_numCalleeLocals)) { beginValidationDidFail(); dataLog(" Wrong number of bits in result!\n"); dataLog(" Result: ", liveAtHead, "\n"); dataLog(" Bit count: ", liveAtHead.numBits(), "\n"); endValidationDidFail(); } for (unsigned i = m_numCalleeLocals; i--;) { VirtualRegister reg = virtualRegisterForLocal(i); if (liveAtHead.get(i)) { beginValidationDidFail(); dataLog(" Variable ", reg, " is expected to be dead.\n"); dataLog(" Result: ", liveAtHead, "\n"); endValidationDidFail(); } } } void CodeBlock::beginValidationDidFail() { dataLog("Validation failure in ", *this, ":\n"); dataLog("\n"); } void CodeBlock::endValidationDidFail() { dataLog("\n"); dumpBytecode(); dataLog("\n"); dataLog("Validation failure.\n"); RELEASE_ASSERT_NOT_REACHED(); } void CodeBlock::addBreakpoint(unsigned numBreakpoints) { m_numBreakpoints += numBreakpoints; ASSERT(m_numBreakpoints); if (JITCode::isOptimizingJIT(jitType())) jettison(Profiler::JettisonDueToDebuggerBreakpoint); } void CodeBlock::setSteppingMode(CodeBlock::SteppingMode mode) { m_steppingMode = mode; if (mode == SteppingModeEnabled && JITCode::isOptimizingJIT(jitType())) jettison(Profiler::JettisonDueToDebuggerStepping); } RareCaseProfile* CodeBlock::rareCaseProfileForBytecodeOffset(int bytecodeOffset) { return tryBinarySearch( m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset, getRareCaseProfileBytecodeOffset); } unsigned CodeBlock::rareCaseProfileCountForBytecodeOffset(int bytecodeOffset) { RareCaseProfile* profile = rareCaseProfileForBytecodeOffset(bytecodeOffset); if (profile) return profile->m_counter; return 0; } ResultProfile* CodeBlock::resultProfileForBytecodeOffset(int bytecodeOffset) { ConcurrentJITLocker locker(m_lock); return resultProfileForBytecodeOffset(locker, bytecodeOffset); } ResultProfile* CodeBlock::resultProfileForBytecodeOffset(const ConcurrentJITLocker&, int bytecodeOffset) { if (!m_bytecodeOffsetToResultProfileIndexMap) return nullptr; auto iterator = m_bytecodeOffsetToResultProfileIndexMap->find(bytecodeOffset); if (iterator == m_bytecodeOffsetToResultProfileIndexMap->end()) return nullptr; return &m_resultProfiles[iterator->value]; } ResultProfile* CodeBlock::ensureResultProfile(int bytecodeOffset) { ConcurrentJITLocker locker(m_lock); return ensureResultProfile(locker, bytecodeOffset); } ResultProfile* CodeBlock::ensureResultProfile(const ConcurrentJITLocker& locker, int bytecodeOffset) { ResultProfile* profile = resultProfileForBytecodeOffset(locker, bytecodeOffset); if (!profile) { m_resultProfiles.append(ResultProfile(bytecodeOffset)); profile = &m_resultProfiles.last(); ASSERT(&m_resultProfiles.last() == &m_resultProfiles[m_resultProfiles.size() - 1]); if (!m_bytecodeOffsetToResultProfileIndexMap) m_bytecodeOffsetToResultProfileIndexMap = std::make_unique(); m_bytecodeOffsetToResultProfileIndexMap->add(bytecodeOffset, m_resultProfiles.size() - 1); } return profile; } #if ENABLE(JIT) DFG::CapabilityLevel CodeBlock::capabilityLevel() { DFG::CapabilityLevel result = computeCapabilityLevel(); m_capabilityLevelState = result; return result; } #endif void CodeBlock::insertBasicBlockBoundariesForControlFlowProfiler(RefCountedArray& instructions) { if (!unlinkedCodeBlock()->hasOpProfileControlFlowBytecodeOffsets()) return; const Vector& bytecodeOffsets = unlinkedCodeBlock()->opProfileControlFlowBytecodeOffsets(); for (size_t i = 0, offsetsLength = bytecodeOffsets.size(); i < offsetsLength; i++) { // Because op_profile_control_flow is emitted at the beginning of every basic block, finding // the next op_profile_control_flow will give us the text range of a single basic block. size_t startIdx = bytecodeOffsets[i]; RELEASE_ASSERT(vm()->interpreter->getOpcodeID(instructions[startIdx].u.opcode) == op_profile_control_flow); int basicBlockStartOffset = instructions[startIdx + 1].u.operand; int basicBlockEndOffset; if (i + 1 < offsetsLength) { size_t endIdx = bytecodeOffsets[i + 1]; RELEASE_ASSERT(vm()->interpreter->getOpcodeID(instructions[endIdx].u.opcode) == op_profile_control_flow); basicBlockEndOffset = instructions[endIdx + 1].u.operand - 1; } else { basicBlockEndOffset = m_sourceOffset + ownerScriptExecutable()->source().length() - 1; // Offset before the closing brace. basicBlockStartOffset = std::min(basicBlockStartOffset, basicBlockEndOffset); // Some start offsets may be at the closing brace, ensure it is the offset before. } // The following check allows for the same textual JavaScript basic block to have its bytecode emitted more // than once and still play nice with the control flow profiler. When basicBlockStartOffset is larger than // basicBlockEndOffset, it indicates that the bytecode generator has emitted code for the same AST node // more than once (for example: ForInNode, Finally blocks in TryNode, etc). Though these are different // basic blocks at the bytecode level, they are generated from the same textual basic block in the JavaScript // program. The condition: // (basicBlockEndOffset < basicBlockStartOffset) // is encountered when op_profile_control_flow lies across the boundary of these duplicated bytecode basic // blocks and the textual offset goes from the end of the duplicated block back to the beginning. These // ranges are dummy ranges and are ignored. The duplicated bytecode basic blocks point to the same // internal data structure, so if any of them execute, it will record the same textual basic block in the // JavaScript program as executing. // At the bytecode level, this situation looks like: // j: op_profile_control_flow (from j->k, we have basicBlockEndOffset < basicBlockStartOffset) // ... // k: op_profile_control_flow (we want to skip over the j->k block and start fresh at offset k as the start of a new basic block k->m). // ... // m: op_profile_control_flow if (basicBlockEndOffset < basicBlockStartOffset) { RELEASE_ASSERT(i + 1 < offsetsLength); // We should never encounter dummy blocks at the end of a CodeBlock. instructions[startIdx + 1].u.basicBlockLocation = vm()->controlFlowProfiler()->dummyBasicBlock(); continue; } BasicBlockLocation* basicBlockLocation = vm()->controlFlowProfiler()->getBasicBlockLocation(ownerScriptExecutable()->sourceID(), basicBlockStartOffset, basicBlockEndOffset); // Find all functions that are enclosed within the range: [basicBlockStartOffset, basicBlockEndOffset] // and insert these functions' start/end offsets as gaps in the current BasicBlockLocation. // This is necessary because in the original source text of a JavaScript program, // function literals form new basic blocks boundaries, but they aren't represented // inside the CodeBlock's instruction stream. auto insertFunctionGaps = [basicBlockLocation, basicBlockStartOffset, basicBlockEndOffset] (const WriteBarrier& functionExecutable) { const UnlinkedFunctionExecutable* executable = functionExecutable->unlinkedExecutable(); int functionStart = executable->typeProfilingStartOffset(); int functionEnd = executable->typeProfilingEndOffset(); if (functionStart >= basicBlockStartOffset && functionEnd <= basicBlockEndOffset) basicBlockLocation->insertGap(functionStart, functionEnd); }; for (const WriteBarrier& executable : m_functionDecls) insertFunctionGaps(executable); for (const WriteBarrier& executable : m_functionExprs) insertFunctionGaps(executable); instructions[startIdx + 1].u.basicBlockLocation = basicBlockLocation; } } #if ENABLE(JIT) void CodeBlock::setPCToCodeOriginMap(std::unique_ptr&& map) { m_pcToCodeOriginMap = WTFMove(map); } Optional CodeBlock::findPC(void* pc) { if (m_pcToCodeOriginMap) { if (Optional codeOrigin = m_pcToCodeOriginMap->findPC(pc)) return codeOrigin; } for (Bag::iterator iter = m_stubInfos.begin(); !!iter; ++iter) { StructureStubInfo* stub = *iter; if (stub->containsPC(pc)) return Optional(stub->codeOrigin); } if (Optional codeOrigin = m_jitCode->findPC(this, pc)) return codeOrigin; return Nullopt; } #endif // ENABLE(JIT) Optional CodeBlock::bytecodeOffsetFromCallSiteIndex(CallSiteIndex callSiteIndex) { Optional bytecodeOffset; JITCode::JITType jitType = this->jitType(); if (jitType == JITCode::InterpreterThunk || jitType == JITCode::BaselineJIT) { #if USE(JSVALUE64) bytecodeOffset = callSiteIndex.bits(); #else Instruction* instruction = bitwise_cast(callSiteIndex.bits()); bytecodeOffset = instruction - instructions().begin(); #endif } else if (jitType == JITCode::DFGJIT || jitType == JITCode::FTLJIT) { #if ENABLE(DFG_JIT) RELEASE_ASSERT(canGetCodeOrigin(callSiteIndex)); CodeOrigin origin = codeOrigin(callSiteIndex); bytecodeOffset = origin.bytecodeIndex; #else RELEASE_ASSERT_NOT_REACHED(); #endif } return bytecodeOffset; } } // namespace JSC