/* * Copyright (C) 2011-2015 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "DFGCSEPhase.h" #if ENABLE(DFG_JIT) #include "DFGAbstractHeap.h" #include "DFGBlockMapInlines.h" #include "DFGClobberSet.h" #include "DFGClobberize.h" #include "DFGDominators.h" #include "DFGEdgeUsesStructure.h" #include "DFGGraph.h" #include "DFGPhase.h" #include "JSCInlines.h" #include #include namespace JSC { namespace DFG { // This file contains two CSE implementations: local and global. LocalCSE typically runs when we're // in DFG mode, i.e. we want to compile quickly. LocalCSE contains a lot of optimizations for // compile time. GlobalCSE, on the other hand, is fairly straight-forward. It will find more // optimization opportunities by virtue of being global. namespace { const bool verbose = false; class ImpureDataSlot { WTF_MAKE_NONCOPYABLE(ImpureDataSlot); WTF_MAKE_FAST_ALLOCATED; public: ImpureDataSlot(HeapLocation key, LazyNode value, unsigned hash) : key(key), value(value), hash(hash) { } HeapLocation key; LazyNode value; unsigned hash; }; struct ImpureDataSlotHash : public DefaultHash>::Hash { static unsigned hash(const std::unique_ptr& key) { return key->hash; } static bool equal(const std::unique_ptr& a, const std::unique_ptr& b) { // The ImpureDataSlot are unique per table per HeapLocation. This lets us compare the key // by just comparing the pointers of the unique ImpureDataSlots. ASSERT(a != b || a->key == b->key); return a == b; } }; struct ImpureDataTranslator { static unsigned hash(const HeapLocation& key) { return key.hash(); } static bool equal(const std::unique_ptr& slot, const HeapLocation& key) { if (!slot) return false; if (HashTraits>::isDeletedValue(slot)) return false; return slot->key == key; } static void translate(std::unique_ptr& slot, const HeapLocation& key, unsigned hashCode) { new (NotNull, std::addressof(slot)) std::unique_ptr(new ImpureDataSlot {key, LazyNode(), hashCode}); } }; class ImpureMap { WTF_MAKE_FAST_ALLOCATED; WTF_MAKE_NONCOPYABLE(ImpureMap); public: ImpureMap() = default; ImpureMap(ImpureMap&& other) { m_heapMap.swap(other.m_heapMap); m_abstractHeapStackMap.swap(other.m_abstractHeapStackMap); m_fallbackStackMap.swap(other.m_fallbackStackMap); #if !defined(NDEBUG) m_debugImpureData.swap(other.m_debugImpureData); #endif } const ImpureDataSlot* add(const HeapLocation& location, const LazyNode& node) { const ImpureDataSlot* result = addImpl(location, node); #if !defined(NDEBUG) auto addResult = m_debugImpureData.add(location, node); ASSERT(!!result == !addResult.isNewEntry); #endif return result; } LazyNode get(const HeapLocation& location) const { LazyNode result = getImpl(location); #if !defined(NDEBUG) ASSERT(result == m_debugImpureData.get(location)); #endif return result; } void clobber(AbstractHeap heap) { switch (heap.kind()) { case World: { clear(); break; } case SideState: break; case Stack: { ASSERT(!heap.payload().isTop()); ASSERT(heap.payload().value() == heap.payload().value32()); m_abstractHeapStackMap.remove(heap.payload().value32()); clobber(m_fallbackStackMap, heap); break; } default: clobber(m_heapMap, heap); break; } #if !defined(NDEBUG) m_debugImpureData.removeIf([heap](const HashMap::KeyValuePairType& pair) -> bool { return heap.overlaps(pair.key.heap()); }); ASSERT(m_debugImpureData.size() == (m_heapMap.size() + m_abstractHeapStackMap.size() + m_fallbackStackMap.size())); const bool verifyClobber = false; if (verifyClobber) { for (auto& pair : m_debugImpureData) ASSERT(!!get(pair.key)); } #endif } void clear() { m_heapMap.clear(); m_abstractHeapStackMap.clear(); m_fallbackStackMap.clear(); #if !defined(NDEBUG) m_debugImpureData.clear(); #endif } private: typedef HashSet, ImpureDataSlotHash> Map; const ImpureDataSlot* addImpl(const HeapLocation& location, const LazyNode& node) { switch (location.heap().kind()) { case World: case SideState: RELEASE_ASSERT_NOT_REACHED(); case Stack: { AbstractHeap abstractHeap = location.heap(); if (abstractHeap.payload().isTop()) return add(m_fallbackStackMap, location, node); ASSERT(abstractHeap.payload().value() == abstractHeap.payload().value32()); auto addResult = m_abstractHeapStackMap.add(abstractHeap.payload().value32(), nullptr); if (addResult.isNewEntry) { addResult.iterator->value.reset(new ImpureDataSlot {location, node, 0}); return nullptr; } if (addResult.iterator->value->key == location) return addResult.iterator->value.get(); return add(m_fallbackStackMap, location, node); } default: return add(m_heapMap, location, node); } return nullptr; } LazyNode getImpl(const HeapLocation& location) const { switch (location.heap().kind()) { case World: case SideState: RELEASE_ASSERT_NOT_REACHED(); case Stack: { ASSERT(location.heap().payload().value() == location.heap().payload().value32()); auto iterator = m_abstractHeapStackMap.find(location.heap().payload().value32()); if (iterator != m_abstractHeapStackMap.end() && iterator->value->key == location) return iterator->value->value; return get(m_fallbackStackMap, location); } default: return get(m_heapMap, location); } return LazyNode(); } static const ImpureDataSlot* add(Map& map, const HeapLocation& location, const LazyNode& node) { auto result = map.add(location); if (result.isNewEntry) { (*result.iterator)->value = node; return nullptr; } return result.iterator->get(); } static LazyNode get(const Map& map, const HeapLocation& location) { auto iterator = map.find(location); if (iterator != map.end()) return (*iterator)->value; return LazyNode(); } static void clobber(Map& map, AbstractHeap heap) { map.removeIf([heap](const std::unique_ptr& slot) -> bool { return heap.overlaps(slot->key.heap()); }); } Map m_worldMap; Map m_heapMap; Map m_sideStateMap; // The majority of Impure Stack Slotsare unique per value. // This is very useful for fast clobber(), we can just remove the slot addressed by AbstractHeap // in O(1). // // When there are conflict, any additional HeapLocation is added in the fallback map. // This works well because fallbackStackMap remains tiny. // // One cannot assume a unique ImpureData is in m_abstractHeapStackMap. It may have been // a duplicate in the past and now only live in m_fallbackStackMap. // // Obviously, TOP always goes into m_fallbackStackMap since it does not have a unique value. HashMap, DefaultHash::Hash, WTF::SignedWithZeroKeyHashTraits> m_abstractHeapStackMap; Map m_fallbackStackMap; #if !defined(NDEBUG) HashMap m_debugImpureData; #endif }; class LocalCSEPhase : public Phase { public: LocalCSEPhase(Graph& graph) : Phase(graph, "local common subexpression elimination") , m_smallBlock(graph) , m_largeBlock(graph) { } bool run() { ASSERT(m_graph.m_fixpointState == FixpointNotConverged); ASSERT(m_graph.m_form == ThreadedCPS || m_graph.m_form == LoadStore); bool changed = false; m_graph.clearReplacements(); for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; if (block->size() <= SmallMaps::capacity) changed |= m_smallBlock.run(block); else changed |= m_largeBlock.run(block); } return changed; } private: class SmallMaps { public: // This permits SmallMaps to be used for blocks that have up to 100 nodes. In practice, // fewer than half of the nodes in a block have pure defs, and even fewer have impure defs. // Thus, a capacity limit of 100 probably means that somewhere around ~40 things may end up // in one of these "small" list-based maps. That number still seems largeish, except that // the overhead of HashMaps can be quite high currently: clearing them, or even removing // enough things from them, deletes (or resizes) their backing store eagerly. Hence // HashMaps induce a lot of malloc traffic. static const unsigned capacity = 100; SmallMaps() : m_pureLength(0) , m_impureLength(0) { } void clear() { m_pureLength = 0; m_impureLength = 0; } void write(AbstractHeap heap) { if (heap.kind() == SideState) return; for (unsigned i = 0; i < m_impureLength; ++i) { if (heap.overlaps(m_impureMap[i].key.heap())) m_impureMap[i--] = m_impureMap[--m_impureLength]; } } Node* addPure(PureValue value, Node* node) { for (unsigned i = m_pureLength; i--;) { if (m_pureMap[i].key == value) return m_pureMap[i].value; } ASSERT(m_pureLength < capacity); m_pureMap[m_pureLength++] = WTF::KeyValuePair(value, node); return nullptr; } LazyNode findReplacement(HeapLocation location) { for (unsigned i = m_impureLength; i--;) { if (m_impureMap[i].key == location) return m_impureMap[i].value; } return nullptr; } LazyNode addImpure(HeapLocation location, LazyNode node) { // FIXME: If we are using small maps, we must not def() derived values. // For now the only derived values we def() are constant-based. if (location.index() && !location.index().isNode()) return nullptr; if (LazyNode result = findReplacement(location)) return result; ASSERT(m_impureLength < capacity); m_impureMap[m_impureLength++] = WTF::KeyValuePair(location, node); return nullptr; } private: WTF::KeyValuePair m_pureMap[capacity]; WTF::KeyValuePair m_impureMap[capacity]; unsigned m_pureLength; unsigned m_impureLength; }; class LargeMaps { public: LargeMaps() { } void clear() { m_pureMap.clear(); m_impureMap.clear(); } void write(AbstractHeap heap) { m_impureMap.clobber(heap); } Node* addPure(PureValue value, Node* node) { auto result = m_pureMap.add(value, node); if (result.isNewEntry) return nullptr; return result.iterator->value; } LazyNode findReplacement(HeapLocation location) { return m_impureMap.get(location); } LazyNode addImpure(const HeapLocation& location, const LazyNode& node) { if (const ImpureDataSlot* slot = m_impureMap.add(location, node)) return slot->value; return LazyNode(); } private: HashMap m_pureMap; ImpureMap m_impureMap; }; template class BlockCSE { public: BlockCSE(Graph& graph) : m_graph(graph) , m_insertionSet(graph) { } bool run(BasicBlock* block) { m_maps.clear(); m_changed = false; m_block = block; for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { m_node = block->at(nodeIndex); m_graph.performSubstitution(m_node); if (m_node->op() == Identity) { m_node->replaceWith(m_node->child1().node()); m_changed = true; } else { // This rule only makes sense for local CSE, since in SSA form we have already // factored the bounds check out of the PutByVal. It's kind of gross, but we // still have reason to believe that PutByValAlias is a good optimization and // that it's better to do it with a single node rather than separating out the // CheckInBounds. if (m_node->op() == PutByVal || m_node->op() == PutByValDirect) { HeapLocation heap; Node* base = m_graph.varArgChild(m_node, 0).node(); Node* index = m_graph.varArgChild(m_node, 1).node(); ArrayMode mode = m_node->arrayMode(); switch (mode.type()) { case Array::Int32: if (!mode.isInBounds()) break; heap = HeapLocation( IndexedPropertyLoc, IndexedInt32Properties, base, index); break; case Array::Double: if (!mode.isInBounds()) break; heap = HeapLocation( IndexedPropertyLoc, IndexedDoubleProperties, base, index); break; case Array::Contiguous: if (!mode.isInBounds()) break; heap = HeapLocation( IndexedPropertyLoc, IndexedContiguousProperties, base, index); break; case Array::Int8Array: case Array::Int16Array: case Array::Int32Array: case Array::Uint8Array: case Array::Uint8ClampedArray: case Array::Uint16Array: case Array::Uint32Array: case Array::Float32Array: case Array::Float64Array: if (!mode.isInBounds()) break; heap = HeapLocation( IndexedPropertyLoc, TypedArrayProperties, base, index); break; default: break; } if (!!heap && m_maps.findReplacement(heap)) m_node->setOp(PutByValAlias); } clobberize(m_graph, m_node, *this); } } m_insertionSet.execute(block); return m_changed; } void read(AbstractHeap) { } void write(AbstractHeap heap) { m_maps.write(heap); } void def(PureValue value) { Node* match = m_maps.addPure(value, m_node); if (!match) return; m_node->replaceWith(match); m_changed = true; } void def(const HeapLocation& location, const LazyNode& value) { LazyNode match = m_maps.addImpure(location, value); if (!match) return; if (m_node->op() == GetLocal) { // Usually the CPS rethreading phase does this. But it's OK for us to mess with // locals so long as: // // - We dethread the graph. Any changes we make may invalidate the assumptions of // our CPS form, particularly if this GetLocal is linked to the variablesAtTail. // // - We don't introduce a Phantom for the child of the GetLocal. This wouldn't be // totally wrong but it would pessimize the code. Just because there is a // GetLocal doesn't mean that the child was live. Simply rerouting the all uses // of this GetLocal will preserve the live-at-exit information just fine. // // We accomplish the latter by just clearing the child; then the Phantom that we // introduce won't have children and so it will eventually just be deleted. m_node->child1() = Edge(); m_graph.dethread(); } if (value.isNode() && value.asNode() == m_node) { match.ensureIsNode(m_insertionSet, m_block, 0)->owner = m_block; ASSERT(match.isNode()); m_node->replaceWith(match.asNode()); m_changed = true; } } private: Graph& m_graph; bool m_changed; Node* m_node; BasicBlock* m_block; Maps m_maps; InsertionSet m_insertionSet; }; BlockCSE m_smallBlock; BlockCSE m_largeBlock; }; class GlobalCSEPhase : public Phase { public: GlobalCSEPhase(Graph& graph) : Phase(graph, "global common subexpression elimination") , m_impureDataMap(graph) , m_insertionSet(graph) { } bool run() { ASSERT(m_graph.m_fixpointState == FixpointNotConverged); ASSERT(m_graph.m_form == SSA); m_graph.initializeNodeOwners(); m_graph.ensureDominators(); m_preOrder = m_graph.blocksInPreOrder(); // First figure out what gets clobbered by blocks. Node that this uses the preOrder list // for convenience only. for (unsigned i = m_preOrder.size(); i--;) { m_block = m_preOrder[i]; m_impureData = &m_impureDataMap[m_block]; for (unsigned nodeIndex = m_block->size(); nodeIndex--;) addWrites(m_graph, m_block->at(nodeIndex), m_impureData->writes); } // Based on my experience doing this before, what follows might have to be made iterative. // Right now it doesn't have to be iterative because everything is dominator-bsed. But when // validation is enabled, we check if iterating would find new CSE opportunities. bool changed = iterate(); // FIXME: It should be possible to assert that CSE will not find any new opportunities if you // run it a second time. Unfortunately, we cannot assert this right now. Note that if we did // this, we'd have to first reset all of our state. // https://bugs.webkit.org/show_bug.cgi?id=145853 return changed; } bool iterate() { if (verbose) dataLog("Performing iteration.\n"); m_changed = false; m_graph.clearReplacements(); for (unsigned i = 0; i < m_preOrder.size(); ++i) { m_block = m_preOrder[i]; m_impureData = &m_impureDataMap[m_block]; m_writesSoFar.clear(); if (verbose) dataLog("Processing block ", *m_block, ":\n"); for (unsigned nodeIndex = 0; nodeIndex < m_block->size(); ++nodeIndex) { m_nodeIndex = nodeIndex; m_node = m_block->at(nodeIndex); if (verbose) dataLog(" Looking at node ", m_node, ":\n"); m_graph.performSubstitution(m_node); if (m_node->op() == Identity) { m_node->replaceWith(m_node->child1().node()); m_changed = true; } else clobberize(m_graph, m_node, *this); } m_insertionSet.execute(m_block); m_impureData->didVisit = true; } return m_changed; } void read(AbstractHeap) { } void write(AbstractHeap heap) { m_impureData->availableAtTail.clobber(heap); m_writesSoFar.add(heap); } void def(PureValue value) { // With pure values we do not have to worry about the possibility of some control flow path // clobbering the value. So, we just search for all of the like values that have been // computed. We pick one that is in a block that dominates ours. Note that this means that // a PureValue will map to a list of nodes, since there may be many places in the control // flow graph that compute a value but only one of them that dominates us. We may build up // a large list of nodes that compute some value in the case of gnarly control flow. This // is probably OK. auto result = m_pureValues.add(value, Vector()); if (result.isNewEntry) { result.iterator->value.append(m_node); return; } for (unsigned i = result.iterator->value.size(); i--;) { Node* candidate = result.iterator->value[i]; if (m_graph.m_dominators->dominates(candidate->owner, m_block)) { m_node->replaceWith(candidate); m_changed = true; return; } } result.iterator->value.append(m_node); } LazyNode findReplacement(HeapLocation location) { // At this instant, our "availableAtTail" reflects the set of things that are available in // this block so far. We check this map to find block-local CSE opportunities before doing // a global search. LazyNode match = m_impureData->availableAtTail.get(location); if (!!match) { if (verbose) dataLog(" Found local match: ", match, "\n"); return match; } // If it's not available at this point in the block, and at some prior point in the block // we have clobbered this heap location, then there is no point in doing a global search. if (m_writesSoFar.overlaps(location.heap())) { if (verbose) dataLog(" Not looking globally because of local clobber: ", m_writesSoFar, "\n"); return nullptr; } // This perfoms a backward search over the control flow graph to find some possible // non-local def() that matches our heap location. Such a match is only valid if there does // not exist any path from that def() to our block that contains a write() that overlaps // our heap. This algorithm looks for both of these things (the matching def and the // overlapping writes) in one backwards DFS pass. // // This starts by looking at the starting block's predecessors, and then it continues along // their predecessors. As soon as this finds a possible def() - one that defines the heap // location we want while dominating our starting block - it assumes that this one must be // the match. It then lets the DFS over predecessors complete, but it doesn't add the // def()'s predecessors; this ensures that any blocks we visit thereafter are on some path // from the def() to us. As soon as the DFG finds a write() that overlaps the location's // heap, it stops, assuming that there is no possible match. Note that the write() case may // trigger before we find a def(), or after. Either way, the write() case causes this // function to immediately return nullptr. // // If the write() is found before we find the def(), then we know that any def() we would // find would have a path to us that trips over the write() and hence becomes invalid. This // is just a direct outcome of us looking for a def() that dominates us. Given a block A // that dominates block B - so that A is the one that would have the def() and B is our // starting block - we know that any other block must either be on the path from A to B, or // it must be on a path from the root to A, but not both. So, if we haven't found A yet but // we already have found a block C that has a write(), then C must be on some path from A // to B, which means that A's def() is invalid for our purposes. Hence, before we find the // def(), stopping on write() is the right thing to do. // // Stopping on write() is also the right thing to do after we find the def(). After we find // the def(), we don't add that block's predecessors to the search worklist. That means // that henceforth the only blocks we will see in the search are blocks on the path from // the def() to us. If any such block has a write() that clobbers our heap then we should // give up. // // Hence this graph search algorithm ends up being deceptively simple: any overlapping // write() causes us to immediately return nullptr, and a matching def() means that we just // record it and neglect to visit its precessors. Vector worklist; Vector seenList; BitVector seen; for (unsigned i = m_block->predecessors.size(); i--;) { BasicBlock* predecessor = m_block->predecessors[i]; if (!seen.get(predecessor->index)) { worklist.append(predecessor); seen.set(predecessor->index); } } while (!worklist.isEmpty()) { BasicBlock* block = worklist.takeLast(); seenList.append(block); if (verbose) dataLog(" Searching in block ", *block, "\n"); ImpureBlockData& data = m_impureDataMap[block]; // We require strict domination because this would only see things in our own block if // they came *after* our position in the block. Clearly, while our block dominates // itself, the things in the block after us don't dominate us. if (m_graph.m_dominators->strictlyDominates(block, m_block)) { if (verbose) dataLog(" It strictly dominates.\n"); DFG_ASSERT(m_graph, m_node, data.didVisit); DFG_ASSERT(m_graph, m_node, !match); match = data.availableAtTail.get(location); if (verbose) dataLog(" Availability: ", match, "\n"); if (!!match) { // Don't examine the predecessors of a match. At this point we just want to // establish that other blocks on the path from here to there don't clobber // the location we're interested in. continue; } } if (verbose) dataLog(" Dealing with write set ", data.writes, "\n"); if (data.writes.overlaps(location.heap())) { if (verbose) dataLog(" Clobbered.\n"); return nullptr; } for (unsigned i = block->predecessors.size(); i--;) { BasicBlock* predecessor = block->predecessors[i]; if (!seen.get(predecessor->index)) { worklist.append(predecessor); seen.set(predecessor->index); } } } if (!match) return nullptr; // Cache the results for next time. We cache them both for this block and for all of our // predecessors, since even though we've already visited our predecessors, our predecessors // probably have successors other than us. // FIXME: Consider caching failed searches as well, when match is null. It's not clear that // the reduction in compile time would warrant the increase in complexity, though. // https://bugs.webkit.org/show_bug.cgi?id=134876 for (BasicBlock* block : seenList) m_impureDataMap[block].availableAtTail.add(location, match); m_impureData->availableAtTail.add(location, match); return match; } void def(HeapLocation location, LazyNode value) { if (verbose) dataLog(" Got heap location def: ", location, " -> ", value, "\n"); LazyNode match = findReplacement(location); if (verbose) dataLog(" Got match: ", match, "\n"); if (!match) { if (verbose) dataLog(" Adding at-tail mapping: ", location, " -> ", value, "\n"); auto result = m_impureData->availableAtTail.add(location, value); ASSERT_UNUSED(result, !result); return; } if (value.isNode() && value.asNode() == m_node) { if (!match.isNode()) { // We need to properly record the constant in order to use an existing one if applicable. // This ensures that re-running GCSE will not find new optimizations. match.ensureIsNode(m_insertionSet, m_block, m_nodeIndex)->owner = m_block; auto result = m_pureValues.add(PureValue(match.asNode(), match->constant()), Vector()); bool replaced = false; if (!result.isNewEntry) { for (unsigned i = result.iterator->value.size(); i--;) { Node* candidate = result.iterator->value[i]; if (m_graph.m_dominators->dominates(candidate->owner, m_block)) { ASSERT(candidate); match->replaceWith(candidate); match.setNode(candidate); replaced = true; break; } } } if (!replaced) result.iterator->value.append(match.asNode()); } ASSERT(match.asNode()); m_node->replaceWith(match.asNode()); m_changed = true; } } struct ImpureBlockData { ImpureBlockData() : didVisit(false) { } ClobberSet writes; ImpureMap availableAtTail; bool didVisit; }; Vector m_preOrder; PureMultiMap m_pureValues; BlockMap m_impureDataMap; BasicBlock* m_block; Node* m_node; unsigned m_nodeIndex; ImpureBlockData* m_impureData; ClobberSet m_writesSoFar; InsertionSet m_insertionSet; bool m_changed; }; } // anonymous namespace bool performLocalCSE(Graph& graph) { return runPhase(graph); } bool performGlobalCSE(Graph& graph) { return runPhase(graph); } } } // namespace JSC::DFG #endif // ENABLE(DFG_JIT)