/* * Copyright (C) 2011, 2013-2015 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "DFGGraph.h" #if ENABLE(DFG_JIT) #include "BytecodeKills.h" #include "BytecodeLivenessAnalysisInlines.h" #include "CodeBlock.h" #include "CodeBlockWithJITType.h" #include "DFGBackwardsCFG.h" #include "DFGBackwardsDominators.h" #include "DFGBlockWorklist.h" #include "DFGCFG.h" #include "DFGClobberSet.h" #include "DFGClobbersExitState.h" #include "DFGControlEquivalenceAnalysis.h" #include "DFGDominators.h" #include "DFGJITCode.h" #include "DFGMayExit.h" #include "DFGNaturalLoops.h" #include "DFGPrePostNumbering.h" #include "DFGVariableAccessDataDump.h" #include "FullBytecodeLiveness.h" #include "FunctionExecutableDump.h" #include "GetterSetter.h" #include "JIT.h" #include "JSLexicalEnvironment.h" #include "MaxFrameExtentForSlowPathCall.h" #include "OperandsInlines.h" #include "JSCInlines.h" #include "StackAlignment.h" #include #include namespace JSC { namespace DFG { // Creates an array of stringized names. static const char* dfgOpNames[] = { #define STRINGIZE_DFG_OP_ENUM(opcode, flags) #opcode , FOR_EACH_DFG_OP(STRINGIZE_DFG_OP_ENUM) #undef STRINGIZE_DFG_OP_ENUM }; Graph::Graph(VM& vm, Plan& plan, LongLivedState& longLivedState) : m_vm(vm) , m_plan(plan) , m_codeBlock(m_plan.codeBlock) , m_profiledBlock(m_codeBlock->alternative()) , m_allocator(longLivedState.m_allocator) , m_cfg(std::make_unique(*this)) , m_nextMachineLocal(0) , m_fixpointState(BeforeFixpoint) , m_structureRegistrationState(HaveNotStartedRegistering) , m_form(LoadStore) , m_unificationState(LocallyUnified) , m_refCountState(EverythingIsLive) { ASSERT(m_profiledBlock); m_hasDebuggerEnabled = m_profiledBlock->wasCompiledWithDebuggingOpcodes() || Options::forceDebuggerBytecodeGeneration(); } Graph::~Graph() { for (BlockIndex blockIndex = numBlocks(); blockIndex--;) { BasicBlock* block = this->block(blockIndex); if (!block) continue; for (unsigned phiIndex = block->phis.size(); phiIndex--;) m_allocator.free(block->phis[phiIndex]); for (unsigned nodeIndex = block->size(); nodeIndex--;) m_allocator.free(block->at(nodeIndex)); } m_allocator.freeAll(); } const char *Graph::opName(NodeType op) { return dfgOpNames[op]; } static void printWhiteSpace(PrintStream& out, unsigned amount) { while (amount-- > 0) out.print(" "); } bool Graph::dumpCodeOrigin(PrintStream& out, const char* prefix, Node*& previousNodeRef, Node* currentNode, DumpContext* context) { if (!currentNode->origin.semantic) return false; Node* previousNode = previousNodeRef; previousNodeRef = currentNode; if (!previousNode) return false; if (previousNode->origin.semantic.inlineCallFrame == currentNode->origin.semantic.inlineCallFrame) return false; Vector previousInlineStack = previousNode->origin.semantic.inlineStack(); Vector currentInlineStack = currentNode->origin.semantic.inlineStack(); unsigned commonSize = std::min(previousInlineStack.size(), currentInlineStack.size()); unsigned indexOfDivergence = commonSize; for (unsigned i = 0; i < commonSize; ++i) { if (previousInlineStack[i].inlineCallFrame != currentInlineStack[i].inlineCallFrame) { indexOfDivergence = i; break; } } bool hasPrinted = false; // Print the pops. for (unsigned i = previousInlineStack.size(); i-- > indexOfDivergence;) { out.print(prefix); printWhiteSpace(out, i * 2); out.print("<-- ", inContext(*previousInlineStack[i].inlineCallFrame, context), "\n"); hasPrinted = true; } // Print the pushes. for (unsigned i = indexOfDivergence; i < currentInlineStack.size(); ++i) { out.print(prefix); printWhiteSpace(out, i * 2); out.print("--> ", inContext(*currentInlineStack[i].inlineCallFrame, context), "\n"); hasPrinted = true; } return hasPrinted; } int Graph::amountOfNodeWhiteSpace(Node* node) { return (node->origin.semantic.inlineDepth() - 1) * 2; } void Graph::printNodeWhiteSpace(PrintStream& out, Node* node) { printWhiteSpace(out, amountOfNodeWhiteSpace(node)); } void Graph::dump(PrintStream& out, const char* prefix, Node* node, DumpContext* context) { NodeType op = node->op(); unsigned refCount = node->refCount(); bool mustGenerate = node->mustGenerate(); if (mustGenerate) --refCount; out.print(prefix); printNodeWhiteSpace(out, node); // Example/explanation of dataflow dump output // // 14: GetByVal(@3, @13) // ^1 ^2 ^3 ^4 ^5 // // (1) The nodeIndex of this operation. // (2) The reference count. The number printed is the 'real' count, // not including the 'mustGenerate' ref. If the node is // 'mustGenerate' then the count it prefixed with '!'. // (3) The virtual register slot assigned to this node. // (4) The name of the operation. // (5) The arguments to the operation. The may be of the form: // @# - a NodeIndex referencing a prior node in the graph. // arg# - an argument number. // id# - the index in the CodeBlock of an identifier { if codeBlock is passed to dump(), the string representation is displayed }. // var# - the index of a var on the global object, used by GetGlobalVar/GetGlobalLexicalVariable/PutGlobalVariable operations. out.printf("% 4d:<%c%u:", (int)node->index(), mustGenerate ? '!' : ' ', refCount); if (node->hasResult() && node->hasVirtualRegister() && node->virtualRegister().isValid()) out.print(node->virtualRegister()); else out.print("-"); out.print(">\t", opName(op), "("); CommaPrinter comma; if (node->flags() & NodeHasVarArgs) { for (unsigned childIdx = node->firstChild(); childIdx < node->firstChild() + node->numChildren(); childIdx++) { if (!m_varArgChildren[childIdx]) continue; out.print(comma, m_varArgChildren[childIdx]); } } else { if (!!node->child1() || !!node->child2() || !!node->child3()) out.print(comma, node->child1()); if (!!node->child2() || !!node->child3()) out.print(comma, node->child2()); if (!!node->child3()) out.print(comma, node->child3()); } if (toCString(NodeFlagsDump(node->flags())) != "") out.print(comma, NodeFlagsDump(node->flags())); if (node->prediction()) out.print(comma, SpeculationDump(node->prediction())); if (node->hasArrayMode()) out.print(comma, node->arrayMode()); if (node->hasArithMode()) out.print(comma, node->arithMode()); if (node->hasArithRoundingMode()) out.print(comma, "Rounding:", node->arithRoundingMode()); if (node->hasScopeOffset()) out.print(comma, node->scopeOffset()); if (node->hasDirectArgumentsOffset()) out.print(comma, node->capturedArgumentsOffset()); if (node->hasRegisterPointer()) out.print(comma, "global", "(", RawPointer(node->variablePointer()), ")"); if (node->hasIdentifier()) out.print(comma, "id", node->identifierNumber(), "{", identifiers()[node->identifierNumber()], "}"); if (node->hasPromotedLocationDescriptor()) out.print(comma, node->promotedLocationDescriptor()); if (node->hasStructureSet()) out.print(comma, inContext(node->structureSet(), context)); if (node->hasStructure()) out.print(comma, inContext(*node->structure(), context)); if (node->hasTransition()) { out.print(comma, pointerDumpInContext(node->transition(), context)); #if USE(JSVALUE64) out.print(", ID:", node->transition()->next->id()); #else out.print(", ID:", RawPointer(node->transition()->next)); #endif } if (node->hasCellOperand()) { if (!node->cellOperand()->value() || !node->cellOperand()->value().isCell()) out.print(comma, "invalid cell operand: ", node->cellOperand()->value()); else { out.print(comma, pointerDump(node->cellOperand()->value().asCell())); if (node->cellOperand()->value().isCell()) { CallVariant variant(node->cellOperand()->value().asCell()); if (ExecutableBase* executable = variant.executable()) { if (executable->isHostFunction()) out.print(comma, ""); else if (FunctionExecutable* functionExecutable = jsDynamicCast(executable)) out.print(comma, FunctionExecutableDump(functionExecutable)); else out.print(comma, ""); } } } } if (node->hasStorageAccessData()) { StorageAccessData& storageAccessData = node->storageAccessData(); out.print(comma, "id", storageAccessData.identifierNumber, "{", identifiers()[storageAccessData.identifierNumber], "}"); out.print(", ", static_cast(storageAccessData.offset)); out.print(", inferredType = ", inContext(storageAccessData.inferredType, context)); } if (node->hasMultiGetByOffsetData()) { MultiGetByOffsetData& data = node->multiGetByOffsetData(); out.print(comma, "id", data.identifierNumber, "{", identifiers()[data.identifierNumber], "}"); for (unsigned i = 0; i < data.cases.size(); ++i) out.print(comma, inContext(data.cases[i], context)); } if (node->hasMultiPutByOffsetData()) { MultiPutByOffsetData& data = node->multiPutByOffsetData(); out.print(comma, "id", data.identifierNumber, "{", identifiers()[data.identifierNumber], "}"); for (unsigned i = 0; i < data.variants.size(); ++i) out.print(comma, inContext(data.variants[i], context)); } ASSERT(node->hasVariableAccessData(*this) == node->hasLocal(*this)); if (node->hasVariableAccessData(*this)) { VariableAccessData* variableAccessData = node->tryGetVariableAccessData(); if (variableAccessData) { VirtualRegister operand = variableAccessData->local(); out.print(comma, variableAccessData->local(), "(", VariableAccessDataDump(*this, variableAccessData), ")"); operand = variableAccessData->machineLocal(); if (operand.isValid()) out.print(comma, "machine:", operand); } } if (node->hasStackAccessData()) { StackAccessData* data = node->stackAccessData(); out.print(comma, data->local); if (data->machineLocal.isValid()) out.print(comma, "machine:", data->machineLocal); out.print(comma, data->format); } if (node->hasUnlinkedLocal()) out.print(comma, node->unlinkedLocal()); if (node->hasUnlinkedMachineLocal()) { VirtualRegister operand = node->unlinkedMachineLocal(); if (operand.isValid()) out.print(comma, "machine:", operand); } if (node->hasConstantBuffer()) { out.print(comma); out.print(node->startConstant(), ":["); CommaPrinter anotherComma; for (unsigned i = 0; i < node->numConstants(); ++i) out.print(anotherComma, pointerDumpInContext(freeze(m_codeBlock->constantBuffer(node->startConstant())[i]), context)); out.print("]"); } if (node->hasLazyJSValue()) out.print(comma, node->lazyJSValue()); if (node->hasIndexingType()) out.print(comma, IndexingTypeDump(node->indexingType())); if (node->hasTypedArrayType()) out.print(comma, node->typedArrayType()); if (node->hasPhi()) out.print(comma, "^", node->phi()->index()); if (node->hasExecutionCounter()) out.print(comma, RawPointer(node->executionCounter())); if (node->hasWatchpointSet()) out.print(comma, RawPointer(node->watchpointSet())); if (node->hasStoragePointer()) out.print(comma, RawPointer(node->storagePointer())); if (node->hasObjectMaterializationData()) out.print(comma, node->objectMaterializationData()); if (node->hasCallVarargsData()) out.print(comma, "firstVarArgOffset = ", node->callVarargsData()->firstVarArgOffset); if (node->hasLoadVarargsData()) { LoadVarargsData* data = node->loadVarargsData(); out.print(comma, "start = ", data->start, ", count = ", data->count); if (data->machineStart.isValid()) out.print(", machineStart = ", data->machineStart); if (data->machineCount.isValid()) out.print(", machineCount = ", data->machineCount); out.print(", offset = ", data->offset, ", mandatoryMinimum = ", data->mandatoryMinimum); out.print(", limit = ", data->limit); } if (node->isConstant()) out.print(comma, pointerDumpInContext(node->constant(), context)); if (node->isJump()) out.print(comma, "T:", *node->targetBlock()); if (node->isBranch()) out.print(comma, "T:", node->branchData()->taken, ", F:", node->branchData()->notTaken); if (node->isSwitch()) { SwitchData* data = node->switchData(); out.print(comma, data->kind); for (unsigned i = 0; i < data->cases.size(); ++i) out.print(comma, inContext(data->cases[i].value, context), ":", data->cases[i].target); out.print(comma, "default:", data->fallThrough); } ClobberSet reads; ClobberSet writes; addReadsAndWrites(*this, node, reads, writes); if (!reads.isEmpty()) out.print(comma, "R:", sortedListDump(reads.direct(), ",")); if (!writes.isEmpty()) out.print(comma, "W:", sortedListDump(writes.direct(), ",")); ExitMode exitMode = mayExit(*this, node); if (exitMode != DoesNotExit) out.print(comma, exitMode); if (clobbersExitState(*this, node)) out.print(comma, "ClobbersExit"); if (node->origin.isSet()) { out.print(comma, "bc#", node->origin.semantic.bytecodeIndex); if (node->origin.semantic != node->origin.forExit && node->origin.forExit.isSet()) out.print(comma, "exit: ", node->origin.forExit); } if (!node->origin.exitOK) out.print(comma, "ExitInvalid"); if (node->origin.wasHoisted) out.print(comma, "WasHoisted"); out.print(")"); if (node->hasVariableAccessData(*this) && node->tryGetVariableAccessData()) out.print(" predicting ", SpeculationDump(node->tryGetVariableAccessData()->prediction())); else if (node->hasHeapPrediction()) out.print(" predicting ", SpeculationDump(node->getHeapPrediction())); out.print("\n"); } bool Graph::terminalsAreValid() { for (BasicBlock* block : blocksInNaturalOrder()) { if (!block->terminal()) return false; } return true; } void Graph::dumpBlockHeader(PrintStream& out, const char* prefix, BasicBlock* block, PhiNodeDumpMode phiNodeDumpMode, DumpContext* context) { out.print(prefix, "Block ", *block, " (", inContext(block->at(0)->origin.semantic, context), "):", block->isReachable ? "" : " (skipped)", block->isOSRTarget ? " (OSR target)" : "", "\n"); if (block->executionCount == block->executionCount) out.print(prefix, " Execution count: ", block->executionCount, "\n"); out.print(prefix, " Predecessors:"); for (size_t i = 0; i < block->predecessors.size(); ++i) out.print(" ", *block->predecessors[i]); out.print("\n"); out.print(prefix, " Successors:"); if (block->terminal()) { for (BasicBlock* successor : block->successors()) { out.print(" ", *successor); if (m_prePostNumbering) out.print(" (", m_prePostNumbering->edgeKind(block, successor), ")"); } } else out.print(" "); out.print("\n"); if (m_dominators && terminalsAreValid()) { out.print(prefix, " Dominated by: ", m_dominators->dominatorsOf(block), "\n"); out.print(prefix, " Dominates: ", m_dominators->blocksDominatedBy(block), "\n"); out.print(prefix, " Dominance Frontier: ", m_dominators->dominanceFrontierOf(block), "\n"); out.print(prefix, " Iterated Dominance Frontier: ", m_dominators->iteratedDominanceFrontierOf(BlockList(1, block)), "\n"); } if (m_backwardsDominators && terminalsAreValid()) { out.print(prefix, " Backwards dominates by: ", m_backwardsDominators->dominatorsOf(block), "\n"); out.print(prefix, " Backwards dominates: ", m_backwardsDominators->blocksDominatedBy(block), "\n"); } if (m_controlEquivalenceAnalysis && terminalsAreValid()) { out.print(prefix, " Control equivalent to:"); for (BasicBlock* otherBlock : blocksInNaturalOrder()) { if (m_controlEquivalenceAnalysis->areEquivalent(block, otherBlock)) out.print(" ", *otherBlock); } out.print("\n"); } if (m_prePostNumbering) out.print(prefix, " Pre/Post Numbering: ", m_prePostNumbering->preNumber(block), "/", m_prePostNumbering->postNumber(block), "\n"); if (m_naturalLoops) { if (const NaturalLoop* loop = m_naturalLoops->headerOf(block)) { out.print(prefix, " Loop header, contains:"); Vector sortedBlockList; for (unsigned i = 0; i < loop->size(); ++i) sortedBlockList.append(loop->at(i)->index); std::sort(sortedBlockList.begin(), sortedBlockList.end()); for (unsigned i = 0; i < sortedBlockList.size(); ++i) out.print(" #", sortedBlockList[i]); out.print("\n"); } Vector containingLoops = m_naturalLoops->loopsOf(block); if (!containingLoops.isEmpty()) { out.print(prefix, " Containing loop headers:"); for (unsigned i = 0; i < containingLoops.size(); ++i) out.print(" ", *containingLoops[i]->header()); out.print("\n"); } } if (!block->phis.isEmpty()) { out.print(prefix, " Phi Nodes:"); for (size_t i = 0; i < block->phis.size(); ++i) { Node* phiNode = block->phis[i]; if (!phiNode->shouldGenerate() && phiNodeDumpMode == DumpLivePhisOnly) continue; out.print(" @", phiNode->index(), "<", phiNode->local(), ",", phiNode->refCount(), ">->("); if (phiNode->child1()) { out.print("@", phiNode->child1()->index()); if (phiNode->child2()) { out.print(", @", phiNode->child2()->index()); if (phiNode->child3()) out.print(", @", phiNode->child3()->index()); } } out.print(")", i + 1 < block->phis.size() ? "," : ""); } out.print("\n"); } } void Graph::dump(PrintStream& out, DumpContext* context) { DumpContext myContext; myContext.graph = this; if (!context) context = &myContext; out.print("\n"); out.print("DFG for ", CodeBlockWithJITType(m_codeBlock, JITCode::DFGJIT), ":\n"); out.print(" Fixpoint state: ", m_fixpointState, "; Form: ", m_form, "; Unification state: ", m_unificationState, "; Ref count state: ", m_refCountState, "\n"); if (m_form == SSA) out.print(" Argument formats: ", listDump(m_argumentFormats), "\n"); else out.print(" Arguments: ", listDump(m_arguments), "\n"); out.print("\n"); Node* lastNode = nullptr; for (size_t b = 0; b < m_blocks.size(); ++b) { BasicBlock* block = m_blocks[b].get(); if (!block) continue; dumpBlockHeader(out, "", block, DumpAllPhis, context); out.print(" States: ", block->cfaStructureClobberStateAtHead); if (!block->cfaHasVisited) out.print(", CurrentlyCFAUnreachable"); if (!block->intersectionOfCFAHasVisited) out.print(", CFAUnreachable"); out.print("\n"); switch (m_form) { case LoadStore: case ThreadedCPS: { out.print(" Vars Before: "); if (block->cfaHasVisited) out.print(inContext(block->valuesAtHead, context)); else out.print(""); out.print("\n"); out.print(" Intersected Vars Before: "); if (block->intersectionOfCFAHasVisited) out.print(inContext(block->intersectionOfPastValuesAtHead, context)); else out.print(""); out.print("\n"); out.print(" Var Links: ", block->variablesAtHead, "\n"); break; } case SSA: { RELEASE_ASSERT(block->ssa); out.print(" Availability: ", block->ssa->availabilityAtHead, "\n"); out.print(" Live: ", nodeListDump(block->ssa->liveAtHead), "\n"); out.print(" Values: ", nodeValuePairListDump(block->ssa->valuesAtHead, context), "\n"); break; } } for (size_t i = 0; i < block->size(); ++i) { dumpCodeOrigin(out, "", lastNode, block->at(i), context); dump(out, "", block->at(i), context); } out.print(" States: ", block->cfaBranchDirection, ", ", block->cfaStructureClobberStateAtTail); if (!block->cfaDidFinish) out.print(", CFAInvalidated"); out.print("\n"); switch (m_form) { case LoadStore: case ThreadedCPS: { out.print(" Vars After: "); if (block->cfaHasVisited) out.print(inContext(block->valuesAtTail, context)); else out.print(""); out.print("\n"); out.print(" Var Links: ", block->variablesAtTail, "\n"); break; } case SSA: { RELEASE_ASSERT(block->ssa); out.print(" Availability: ", block->ssa->availabilityAtTail, "\n"); out.print(" Live: ", nodeListDump(block->ssa->liveAtTail), "\n"); out.print(" Values: ", nodeMapDump(block->ssa->valuesAtTail, context), "\n"); break; } } out.print("\n"); } out.print("GC Values:\n"); for (FrozenValue* value : m_frozenValues) { if (value->pointsToHeap()) out.print(" ", inContext(*value, &myContext), "\n"); } out.print(inContext(watchpoints(), &myContext)); if (!myContext.isEmpty()) { myContext.dump(out); out.print("\n"); } } void Graph::dethread() { if (m_form == LoadStore || m_form == SSA) return; if (logCompilationChanges()) dataLog("Dethreading DFG graph.\n"); for (BlockIndex blockIndex = m_blocks.size(); blockIndex--;) { BasicBlock* block = m_blocks[blockIndex].get(); if (!block) continue; for (unsigned phiIndex = block->phis.size(); phiIndex--;) { Node* phi = block->phis[phiIndex]; phi->children.reset(); } } m_form = LoadStore; } void Graph::handleSuccessor(Vector& worklist, BasicBlock* block, BasicBlock* successor) { if (!successor->isReachable) { successor->isReachable = true; worklist.append(successor); } successor->predecessors.append(block); } void Graph::determineReachability() { Vector worklist; worklist.append(block(0)); block(0)->isReachable = true; while (!worklist.isEmpty()) { BasicBlock* block = worklist.takeLast(); for (unsigned i = block->numSuccessors(); i--;) handleSuccessor(worklist, block, block->successor(i)); } } void Graph::resetReachability() { for (BlockIndex blockIndex = m_blocks.size(); blockIndex--;) { BasicBlock* block = m_blocks[blockIndex].get(); if (!block) continue; block->isReachable = false; block->predecessors.clear(); } determineReachability(); } namespace { class RefCountCalculator { public: RefCountCalculator(Graph& graph) : m_graph(graph) { } void calculate() { // First reset the counts to 0 for all nodes. for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; for (unsigned indexInBlock = block->size(); indexInBlock--;) block->at(indexInBlock)->setRefCount(0); for (unsigned phiIndex = block->phis.size(); phiIndex--;) block->phis[phiIndex]->setRefCount(0); } // Now find the roots: // - Nodes that are must-generate. // - Nodes that are reachable from type checks. // Set their ref counts to 1 and put them on the worklist. for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; for (unsigned indexInBlock = block->size(); indexInBlock--;) { Node* node = block->at(indexInBlock); DFG_NODE_DO_TO_CHILDREN(m_graph, node, findTypeCheckRoot); if (!(node->flags() & NodeMustGenerate)) continue; if (!node->postfixRef()) m_worklist.append(node); } } while (!m_worklist.isEmpty()) { while (!m_worklist.isEmpty()) { Node* node = m_worklist.last(); m_worklist.removeLast(); ASSERT(node->shouldGenerate()); // It should not be on the worklist unless it's ref'ed. DFG_NODE_DO_TO_CHILDREN(m_graph, node, countEdge); } if (m_graph.m_form == SSA) { // Find Phi->Upsilon edges, which are represented as meta-data in the // Upsilon. for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; for (unsigned nodeIndex = block->size(); nodeIndex--;) { Node* node = block->at(nodeIndex); if (node->op() != Upsilon) continue; if (node->shouldGenerate()) continue; if (node->phi()->shouldGenerate()) countNode(node); } } } } } private: void findTypeCheckRoot(Node*, Edge edge) { // We may have an "unproved" untyped use for code that is unreachable. The CFA // will just not have gotten around to it. if (edge.isProved() || edge.willNotHaveCheck()) return; if (!edge->postfixRef()) m_worklist.append(edge.node()); } void countNode(Node* node) { if (node->postfixRef()) return; m_worklist.append(node); } void countEdge(Node*, Edge edge) { // Don't count edges that are already counted for their type checks. if (!(edge.isProved() || edge.willNotHaveCheck())) return; countNode(edge.node()); } Graph& m_graph; Vector m_worklist; }; } // anonymous namespace void Graph::computeRefCounts() { RefCountCalculator calculator(*this); calculator.calculate(); } void Graph::killBlockAndItsContents(BasicBlock* block) { for (unsigned phiIndex = block->phis.size(); phiIndex--;) m_allocator.free(block->phis[phiIndex]); for (unsigned nodeIndex = block->size(); nodeIndex--;) m_allocator.free(block->at(nodeIndex)); killBlock(block); } void Graph::killUnreachableBlocks() { for (BlockIndex blockIndex = 0; blockIndex < numBlocks(); ++blockIndex) { BasicBlock* block = this->block(blockIndex); if (!block) continue; if (block->isReachable) continue; killBlockAndItsContents(block); } } void Graph::invalidateCFG() { m_dominators = nullptr; m_naturalLoops = nullptr; m_prePostNumbering = nullptr; m_controlEquivalenceAnalysis = nullptr; m_backwardsDominators = nullptr; m_backwardsCFG = nullptr; } void Graph::substituteGetLocal(BasicBlock& block, unsigned startIndexInBlock, VariableAccessData* variableAccessData, Node* newGetLocal) { for (unsigned indexInBlock = startIndexInBlock; indexInBlock < block.size(); ++indexInBlock) { Node* node = block[indexInBlock]; bool shouldContinue = true; switch (node->op()) { case SetLocal: { if (node->local() == variableAccessData->local()) shouldContinue = false; break; } case GetLocal: { if (node->variableAccessData() != variableAccessData) continue; substitute(block, indexInBlock, node, newGetLocal); Node* oldTailNode = block.variablesAtTail.operand(variableAccessData->local()); if (oldTailNode == node) block.variablesAtTail.operand(variableAccessData->local()) = newGetLocal; shouldContinue = false; break; } default: break; } if (!shouldContinue) break; } } BlockList Graph::blocksInPreOrder() { BlockList result; BlockWorklist worklist; worklist.push(block(0)); while (BasicBlock* block = worklist.pop()) { result.append(block); for (unsigned i = block->numSuccessors(); i--;) worklist.push(block->successor(i)); } return result; } BlockList Graph::blocksInPostOrder() { BlockList result; PostOrderBlockWorklist worklist; worklist.push(block(0)); while (BlockWithOrder item = worklist.pop()) { switch (item.order) { case VisitOrder::Pre: worklist.pushPost(item.node); for (unsigned i = item.node->numSuccessors(); i--;) worklist.push(item.node->successor(i)); break; case VisitOrder::Post: result.append(item.node); break; } } return result; } void Graph::clearReplacements() { for (BlockIndex blockIndex = numBlocks(); blockIndex--;) { BasicBlock* block = m_blocks[blockIndex].get(); if (!block) continue; for (unsigned phiIndex = block->phis.size(); phiIndex--;) block->phis[phiIndex]->setReplacement(nullptr); for (unsigned nodeIndex = block->size(); nodeIndex--;) block->at(nodeIndex)->setReplacement(nullptr); } } void Graph::clearEpochs() { for (BlockIndex blockIndex = numBlocks(); blockIndex--;) { BasicBlock* block = m_blocks[blockIndex].get(); if (!block) continue; for (unsigned phiIndex = block->phis.size(); phiIndex--;) block->phis[phiIndex]->setEpoch(Epoch()); for (unsigned nodeIndex = block->size(); nodeIndex--;) block->at(nodeIndex)->setEpoch(Epoch()); } } void Graph::initializeNodeOwners() { for (BlockIndex blockIndex = numBlocks(); blockIndex--;) { BasicBlock* block = m_blocks[blockIndex].get(); if (!block) continue; for (unsigned phiIndex = block->phis.size(); phiIndex--;) block->phis[phiIndex]->owner = block; for (unsigned nodeIndex = block->size(); nodeIndex--;) block->at(nodeIndex)->owner = block; } } void Graph::clearFlagsOnAllNodes(NodeFlags flags) { for (BlockIndex blockIndex = numBlocks(); blockIndex--;) { BasicBlock* block = m_blocks[blockIndex].get(); if (!block) continue; for (unsigned phiIndex = block->phis.size(); phiIndex--;) block->phis[phiIndex]->clearFlags(flags); for (unsigned nodeIndex = block->size(); nodeIndex--;) block->at(nodeIndex)->clearFlags(flags); } } bool Graph::watchCondition(const ObjectPropertyCondition& key) { if (!key.isWatchable()) return false; m_plan.weakReferences.addLazily(key.object()); if (key.hasPrototype()) m_plan.weakReferences.addLazily(key.prototype()); if (key.hasRequiredValue()) m_plan.weakReferences.addLazily(key.requiredValue()); m_plan.watchpoints.addLazily(key); if (key.kind() == PropertyCondition::Presence) m_safeToLoad.add(std::make_pair(key.object(), key.offset())); return true; } bool Graph::watchConditions(const ObjectPropertyConditionSet& keys) { if (!keys.isValid()) return false; for (const ObjectPropertyCondition& key : keys) { if (!watchCondition(key)) return false; } return true; } bool Graph::isSafeToLoad(JSObject* base, PropertyOffset offset) { return m_safeToLoad.contains(std::make_pair(base, offset)); } InferredType::Descriptor Graph::inferredTypeFor(const PropertyTypeKey& key) { assertIsRegistered(key.structure()); auto iter = m_inferredTypes.find(key); if (iter != m_inferredTypes.end()) return iter->value; InferredType* typeObject = key.structure()->inferredTypeFor(key.uid()); if (!typeObject) { m_inferredTypes.add(key, InferredType::Top); return InferredType::Top; } InferredType::Descriptor typeDescriptor = typeObject->descriptor(); if (typeDescriptor.kind() == InferredType::Top) { m_inferredTypes.add(key, InferredType::Top); return InferredType::Top; } m_inferredTypes.add(key, typeDescriptor); m_plan.weakReferences.addLazily(typeObject); registerInferredType(typeDescriptor); // Note that we may already be watching this desired inferred type, because multiple structures may // point to the same InferredType instance. m_plan.watchpoints.addLazily(DesiredInferredType(typeObject, typeDescriptor)); return typeDescriptor; } FullBytecodeLiveness& Graph::livenessFor(CodeBlock* codeBlock) { HashMap>::iterator iter = m_bytecodeLiveness.find(codeBlock); if (iter != m_bytecodeLiveness.end()) return *iter->value; std::unique_ptr liveness = std::make_unique(); codeBlock->livenessAnalysis().computeFullLiveness(*liveness); FullBytecodeLiveness& result = *liveness; m_bytecodeLiveness.add(codeBlock, WTFMove(liveness)); return result; } FullBytecodeLiveness& Graph::livenessFor(InlineCallFrame* inlineCallFrame) { return livenessFor(baselineCodeBlockFor(inlineCallFrame)); } BytecodeKills& Graph::killsFor(CodeBlock* codeBlock) { HashMap>::iterator iter = m_bytecodeKills.find(codeBlock); if (iter != m_bytecodeKills.end()) return *iter->value; std::unique_ptr kills = std::make_unique(); codeBlock->livenessAnalysis().computeKills(*kills); BytecodeKills& result = *kills; m_bytecodeKills.add(codeBlock, WTFMove(kills)); return result; } BytecodeKills& Graph::killsFor(InlineCallFrame* inlineCallFrame) { return killsFor(baselineCodeBlockFor(inlineCallFrame)); } bool Graph::isLiveInBytecode(VirtualRegister operand, CodeOrigin codeOrigin) { CodeOrigin* codeOriginPtr = &codeOrigin; for (;;) { VirtualRegister reg = VirtualRegister( operand.offset() - codeOriginPtr->stackOffset()); if (operand.offset() < codeOriginPtr->stackOffset() + JSStack::CallFrameHeaderSize) { if (reg.isArgument()) { RELEASE_ASSERT(reg.offset() < JSStack::CallFrameHeaderSize); if (codeOriginPtr->inlineCallFrame->isClosureCall && reg.offset() == JSStack::Callee) return true; if (codeOriginPtr->inlineCallFrame->isVarargs() && reg.offset() == JSStack::ArgumentCount) return true; return false; } return livenessFor(codeOriginPtr->inlineCallFrame).operandIsLive( reg.offset(), codeOriginPtr->bytecodeIndex); } InlineCallFrame* inlineCallFrame = codeOriginPtr->inlineCallFrame; if (!inlineCallFrame) break; // Arguments are always live. This would be redundant if it wasn't for our // op_call_varargs inlining. if (reg.isArgument() && static_cast(reg.toArgument()) < inlineCallFrame->arguments.size()) return true; codeOriginPtr = inlineCallFrame->getCallerSkippingTailCalls(); // The first inline call frame could be an inline tail call if (!codeOriginPtr) break; } return true; } BitVector Graph::localsLiveInBytecode(CodeOrigin codeOrigin) { BitVector result; result.ensureSize(block(0)->variablesAtHead.numberOfLocals()); forAllLocalsLiveInBytecode( codeOrigin, [&] (VirtualRegister reg) { ASSERT(reg.isLocal()); result.quickSet(reg.toLocal()); }); return result; } unsigned Graph::frameRegisterCount() { unsigned result = m_nextMachineLocal + std::max(m_parameterSlots, static_cast(maxFrameExtentForSlowPathCallInRegisters)); return roundLocalRegisterCountForFramePointerOffset(result); } unsigned Graph::stackPointerOffset() { return virtualRegisterForLocal(frameRegisterCount() - 1).offset(); } unsigned Graph::requiredRegisterCountForExit() { unsigned count = JIT::frameRegisterCountFor(m_profiledBlock); for (InlineCallFrameSet::iterator iter = m_plan.inlineCallFrames->begin(); !!iter; ++iter) { InlineCallFrame* inlineCallFrame = *iter; CodeBlock* codeBlock = baselineCodeBlockForInlineCallFrame(inlineCallFrame); unsigned requiredCount = VirtualRegister(inlineCallFrame->stackOffset).toLocal() + 1 + JIT::frameRegisterCountFor(codeBlock); count = std::max(count, requiredCount); } return count; } unsigned Graph::requiredRegisterCountForExecutionAndExit() { return std::max(frameRegisterCount(), requiredRegisterCountForExit()); } JSValue Graph::tryGetConstantProperty( JSValue base, const StructureSet& structureSet, PropertyOffset offset) { if (!base || !base.isObject()) return JSValue(); JSObject* object = asObject(base); for (unsigned i = structureSet.size(); i--;) { Structure* structure = structureSet[i]; assertIsRegistered(structure); WatchpointSet* set = structure->propertyReplacementWatchpointSet(offset); if (!set || !set->isStillValid()) return JSValue(); ASSERT(structure->isValidOffset(offset)); ASSERT(!structure->isUncacheableDictionary()); watchpoints().addLazily(set); } // What follows may require some extra thought. We need this load to load a valid JSValue. If // our profiling makes sense and we're still on track to generate code that won't be // invalidated, then we have nothing to worry about. We do, however, have to worry about // loading - and then using - an invalid JSValue in the case that unbeknownst to us our code // is doomed. // // One argument in favor of this code is that it should definitely work because the butterfly // is always set before the structure. However, we don't currently have a fence between those // stores. It's not clear if this matters, however. We don't ever shrink the property storage. // So, for this to fail, you'd need an access on a constant object pointer such that the inline // caches told us that the object had a structure that it did not *yet* have, and then later, // the object transitioned to that structure that the inline caches had alraedy seen. And then // the processor reordered the stores. Seems unlikely and difficult to test. I believe that // this is worth revisiting but it isn't worth losing sleep over. Filed: // https://bugs.webkit.org/show_bug.cgi?id=134641 // // For now, we just do the minimal thing: defend against the structure right now being // incompatible with the getDirect we're trying to do. The easiest way to do that is to // determine if the structure belongs to the proven set. if (!structureSet.contains(object->structure())) return JSValue(); return object->getDirect(offset); } JSValue Graph::tryGetConstantProperty(JSValue base, Structure* structure, PropertyOffset offset) { return tryGetConstantProperty(base, StructureSet(structure), offset); } JSValue Graph::tryGetConstantProperty( JSValue base, const StructureAbstractValue& structure, PropertyOffset offset) { if (structure.isInfinite()) { // FIXME: If we just converted the offset to a uid, we could do ObjectPropertyCondition // watching to constant-fold the property. // https://bugs.webkit.org/show_bug.cgi?id=147271 return JSValue(); } return tryGetConstantProperty(base, structure.set(), offset); } JSValue Graph::tryGetConstantProperty(const AbstractValue& base, PropertyOffset offset) { return tryGetConstantProperty(base.m_value, base.m_structure, offset); } AbstractValue Graph::inferredValueForProperty( const StructureSet& base, UniquedStringImpl* uid, StructureClobberState clobberState) { AbstractValue result; base.forEach( [&] (Structure* structure) { AbstractValue value; value.set(*this, inferredTypeForProperty(structure, uid)); result.merge(value); }); if (clobberState == StructuresAreClobbered) result.clobberStructures(); return result; } AbstractValue Graph::inferredValueForProperty( const AbstractValue& base, UniquedStringImpl* uid, PropertyOffset offset, StructureClobberState clobberState) { if (JSValue value = tryGetConstantProperty(base, offset)) { AbstractValue result; result.set(*this, *freeze(value), clobberState); return result; } if (base.m_structure.isFinite()) return inferredValueForProperty(base.m_structure.set(), uid, clobberState); return AbstractValue::heapTop(); } JSValue Graph::tryGetConstantClosureVar(JSValue base, ScopeOffset offset) { // This has an awesome concurrency story. See comment for GetGlobalVar in ByteCodeParser. if (!base) return JSValue(); JSLexicalEnvironment* activation = jsDynamicCast(base); if (!activation) return JSValue(); SymbolTable* symbolTable = activation->symbolTable(); JSValue value; WatchpointSet* set; { ConcurrentJITLocker locker(symbolTable->m_lock); SymbolTableEntry* entry = symbolTable->entryFor(locker, offset); if (!entry) return JSValue(); set = entry->watchpointSet(); if (!set) return JSValue(); if (set->state() != IsWatched) return JSValue(); ASSERT(entry->scopeOffset() == offset); value = activation->variableAt(offset).get(); if (!value) return JSValue(); } watchpoints().addLazily(set); return value; } JSValue Graph::tryGetConstantClosureVar(const AbstractValue& value, ScopeOffset offset) { return tryGetConstantClosureVar(value.m_value, offset); } JSValue Graph::tryGetConstantClosureVar(Node* node, ScopeOffset offset) { if (!node->hasConstant()) return JSValue(); return tryGetConstantClosureVar(node->asJSValue(), offset); } JSArrayBufferView* Graph::tryGetFoldableView(JSValue value) { if (!value) return nullptr; JSArrayBufferView* view = jsDynamicCast(value); if (!value) return nullptr; if (!view->length()) return nullptr; WTF::loadLoadFence(); watchpoints().addLazily(view); return view; } JSArrayBufferView* Graph::tryGetFoldableView(JSValue value, ArrayMode arrayMode) { if (arrayMode.type() != Array::AnyTypedArray && arrayMode.typedArrayType() == NotTypedArray) return nullptr; return tryGetFoldableView(value); } void Graph::registerFrozenValues() { m_codeBlock->constants().resize(0); m_codeBlock->constantsSourceCodeRepresentation().resize(0); for (FrozenValue* value : m_frozenValues) { if (!value->pointsToHeap()) continue; ASSERT(value->structure()); ASSERT(m_plan.weakReferences.contains(value->structure())); switch (value->strength()) { case WeakValue: { m_plan.weakReferences.addLazily(value->value().asCell()); break; } case StrongValue: { unsigned constantIndex = m_codeBlock->addConstantLazily(); // We already have a barrier on the code block. m_codeBlock->constants()[constantIndex].setWithoutWriteBarrier(value->value()); break; } } } m_codeBlock->constants().shrinkToFit(); m_codeBlock->constantsSourceCodeRepresentation().shrinkToFit(); } void Graph::visitChildren(SlotVisitor& visitor) { for (FrozenValue* value : m_frozenValues) { visitor.appendUnbarrieredReadOnlyValue(value->value()); visitor.appendUnbarrieredReadOnlyPointer(value->structure()); } for (BlockIndex blockIndex = numBlocks(); blockIndex--;) { BasicBlock* block = this->block(blockIndex); if (!block) continue; for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { Node* node = block->at(nodeIndex); switch (node->op()) { case CheckStructure: for (unsigned i = node->structureSet().size(); i--;) visitor.appendUnbarrieredReadOnlyPointer(node->structureSet()[i]); break; case NewObject: case ArrayifyToStructure: case NewStringObject: visitor.appendUnbarrieredReadOnlyPointer(node->structure()); break; case PutStructure: case AllocatePropertyStorage: case ReallocatePropertyStorage: visitor.appendUnbarrieredReadOnlyPointer( node->transition()->previous); visitor.appendUnbarrieredReadOnlyPointer( node->transition()->next); break; case MultiGetByOffset: for (const MultiGetByOffsetCase& getCase : node->multiGetByOffsetData().cases) { for (Structure* structure : getCase.set()) visitor.appendUnbarrieredReadOnlyPointer(structure); } break; case MultiPutByOffset: for (unsigned i = node->multiPutByOffsetData().variants.size(); i--;) { PutByIdVariant& variant = node->multiPutByOffsetData().variants[i]; const StructureSet& set = variant.oldStructure(); for (unsigned j = set.size(); j--;) visitor.appendUnbarrieredReadOnlyPointer(set[j]); if (variant.kind() == PutByIdVariant::Transition) visitor.appendUnbarrieredReadOnlyPointer(variant.newStructure()); } break; default: break; } } } } FrozenValue* Graph::freeze(JSValue value) { if (UNLIKELY(!value)) return FrozenValue::emptySingleton(); auto result = m_frozenValueMap.add(JSValue::encode(value), nullptr); if (LIKELY(!result.isNewEntry)) return result.iterator->value; if (value.isUInt32()) m_uint32ValuesInUse.append(value.asUInt32()); FrozenValue frozenValue = FrozenValue::freeze(value); if (Structure* structure = frozenValue.structure()) registerStructure(structure); return result.iterator->value = m_frozenValues.add(frozenValue); } FrozenValue* Graph::freezeStrong(JSValue value) { FrozenValue* result = freeze(value); result->strengthenTo(StrongValue); return result; } void Graph::convertToConstant(Node* node, FrozenValue* value) { if (value->structure()) assertIsRegistered(value->structure()); node->convertToConstant(value); } void Graph::convertToConstant(Node* node, JSValue value) { convertToConstant(node, freeze(value)); } void Graph::convertToStrongConstant(Node* node, JSValue value) { convertToConstant(node, freezeStrong(value)); } StructureRegistrationResult Graph::registerStructure(Structure* structure) { m_plan.weakReferences.addLazily(structure); if (m_plan.watchpoints.consider(structure)) return StructureRegisteredAndWatched; return StructureRegisteredNormally; } void Graph::assertIsRegistered(Structure* structure) { // It's convenient to be able to call this with a maybe-null structure. if (!structure) return; DFG_ASSERT(*this, nullptr, m_plan.weakReferences.contains(structure)); if (!structure->dfgShouldWatch()) return; if (watchpoints().isWatched(structure->transitionWatchpointSet())) return; DFG_CRASH(*this, nullptr, toCString("Structure ", pointerDump(structure), " is watchable but isn't being watched.").data()); } NO_RETURN_DUE_TO_CRASH static void crash( Graph& graph, const CString& whileText, const char* file, int line, const char* function, const char* assertion) { startCrashing(); dataLog("DFG ASSERTION FAILED: ", assertion, "\n"); dataLog(file, "(", line, ") : ", function, "\n"); dataLog("\n"); dataLog(whileText); dataLog("Graph at time of failure:\n"); graph.dump(); dataLog("\n"); dataLog("DFG ASSERTION FAILED: ", assertion, "\n"); dataLog(file, "(", line, ") : ", function, "\n"); CRASH_WITH_SECURITY_IMPLICATION(); } void Graph::handleAssertionFailure( std::nullptr_t, const char* file, int line, const char* function, const char* assertion) { crash(*this, "", file, line, function, assertion); } void Graph::handleAssertionFailure( Node* node, const char* file, int line, const char* function, const char* assertion) { crash(*this, toCString("While handling node ", node, "\n\n"), file, line, function, assertion); } void Graph::handleAssertionFailure( BasicBlock* block, const char* file, int line, const char* function, const char* assertion) { crash(*this, toCString("While handling block ", pointerDump(block), "\n\n"), file, line, function, assertion); } Dominators& Graph::ensureDominators() { if (!m_dominators) m_dominators = std::make_unique(*this); return *m_dominators; } PrePostNumbering& Graph::ensurePrePostNumbering() { if (!m_prePostNumbering) m_prePostNumbering = std::make_unique(*this); return *m_prePostNumbering; } NaturalLoops& Graph::ensureNaturalLoops() { ensureDominators(); if (!m_naturalLoops) m_naturalLoops = std::make_unique(*this); return *m_naturalLoops; } BackwardsCFG& Graph::ensureBackwardsCFG() { if (!m_backwardsCFG) m_backwardsCFG = std::make_unique(*this); return *m_backwardsCFG; } BackwardsDominators& Graph::ensureBackwardsDominators() { if (!m_backwardsDominators) m_backwardsDominators = std::make_unique(*this); return *m_backwardsDominators; } ControlEquivalenceAnalysis& Graph::ensureControlEquivalenceAnalysis() { if (!m_controlEquivalenceAnalysis) m_controlEquivalenceAnalysis = std::make_unique(*this); return *m_controlEquivalenceAnalysis; } MethodOfGettingAValueProfile Graph::methodOfGettingAValueProfileFor(Node* node) { while (node) { CodeBlock* profiledBlock = baselineCodeBlockFor(node->origin.semantic); if (node->hasLocal(*this)) { ValueProfile* result = [&] () -> ValueProfile* { if (!node->local().isArgument()) return nullptr; int argument = node->local().toArgument(); Node* argumentNode = m_arguments[argument]; if (!argumentNode) return nullptr; if (node->variableAccessData() != argumentNode->variableAccessData()) return nullptr; return profiledBlock->valueProfileForArgument(argument); }(); if (result) return result; if (node->op() == GetLocal) { return MethodOfGettingAValueProfile::fromLazyOperand( profiledBlock, LazyOperandValueProfileKey( node->origin.semantic.bytecodeIndex, node->local())); } } if (node->hasHeapPrediction()) return profiledBlock->valueProfileForBytecodeOffset(node->origin.semantic.bytecodeIndex); if (ResultProfile* result = profiledBlock->resultProfileForBytecodeOffset(node->origin.semantic.bytecodeIndex)) return result; switch (node->op()) { case Identity: case ValueRep: case DoubleRep: case Int52Rep: node = node->child1().node(); break; default: node = nullptr; } } return MethodOfGettingAValueProfile(); } bool Graph::getRegExpPrototypeProperty(JSObject* regExpPrototype, Structure* regExpPrototypeStructure, UniquedStringImpl* uid, JSValue& returnJSValue) { unsigned attributesUnused; PropertyOffset offset = regExpPrototypeStructure->getConcurrently(uid, attributesUnused); if (!isValidOffset(offset)) return false; JSValue value = tryGetConstantProperty(regExpPrototype, regExpPrototypeStructure, offset); if (!value) return false; // We only care about functions and getters at this point. If you want to access other properties // you'll have to add code for those types. JSFunction* function = jsDynamicCast(value); if (!function) { GetterSetter* getterSetter = jsDynamicCast(value); if (!getterSetter) return false; returnJSValue = JSValue(getterSetter); return true; } returnJSValue = value; return true; } bool Graph::isStringPrototypeMethodSane(JSGlobalObject* globalObject, UniquedStringImpl* uid) { ObjectPropertyConditionSet conditions = generateConditionsForPrototypeEquivalenceConcurrently(m_vm, globalObject, globalObject->stringObjectStructure(), globalObject->stringPrototype(), uid); if (!conditions.isValid()) return false; ObjectPropertyCondition equivalenceCondition = conditions.slotBaseCondition(); RELEASE_ASSERT(equivalenceCondition.hasRequiredValue()); JSFunction* function = jsDynamicCast(equivalenceCondition.condition().requiredValue()); if (!function) return false; if (function->executable()->intrinsicFor(CodeForCall) != StringPrototypeValueOfIntrinsic) return false; return watchConditions(conditions); } bool Graph::canOptimizeStringObjectAccess(const CodeOrigin& codeOrigin) { if (hasExitSite(codeOrigin, NotStringObject)) return false; JSGlobalObject* globalObject = globalObjectFor(codeOrigin); Structure* stringObjectStructure = globalObjectFor(codeOrigin)->stringObjectStructure(); registerStructure(stringObjectStructure); ASSERT(stringObjectStructure->storedPrototype().isObject()); ASSERT(stringObjectStructure->storedPrototype().asCell()->classInfo() == StringPrototype::info()); if (!watchConditions(generateConditionsForPropertyMissConcurrently(m_vm, globalObject, stringObjectStructure, m_vm.propertyNames->toPrimitiveSymbol.impl()))) return false; // We're being conservative here. We want DFG's ToString on StringObject to be // used in both numeric contexts (that would call valueOf()) and string contexts // (that would call toString()). We don't want the DFG to have to distinguish // between the two, just because that seems like it would get confusing. So we // just require both methods to be sane. if (!isStringPrototypeMethodSane(globalObject, m_vm.propertyNames->valueOf.impl())) return false; return isStringPrototypeMethodSane(globalObject, m_vm.propertyNames->toString.impl()); } bool Graph::willCatchExceptionInMachineFrame(CodeOrigin codeOrigin, CodeOrigin& opCatchOriginOut, HandlerInfo*& catchHandlerOut) { if (!m_hasExceptionHandlers) return false; unsigned bytecodeIndexToCheck = codeOrigin.bytecodeIndex; while (1) { InlineCallFrame* inlineCallFrame = codeOrigin.inlineCallFrame; CodeBlock* codeBlock = baselineCodeBlockFor(inlineCallFrame); if (HandlerInfo* handler = codeBlock->handlerForBytecodeOffset(bytecodeIndexToCheck)) { opCatchOriginOut = CodeOrigin(handler->target, inlineCallFrame); catchHandlerOut = handler; return true; } if (!inlineCallFrame) return false; bytecodeIndexToCheck = inlineCallFrame->directCaller.bytecodeIndex; codeOrigin = codeOrigin.inlineCallFrame->directCaller; } RELEASE_ASSERT_NOT_REACHED(); } } } // namespace JSC::DFG #endif // ENABLE(DFG_JIT)