/* * Copyright (C) 2011-2016 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef DFGSpeculativeJIT_h #define DFGSpeculativeJIT_h #if ENABLE(DFG_JIT) #include "DFGAbstractInterpreter.h" #include "DFGGenerationInfo.h" #include "DFGInPlaceAbstractState.h" #include "DFGJITCompiler.h" #include "DFGOSRExit.h" #include "DFGOSRExitJumpPlaceholder.h" #include "DFGSilentRegisterSavePlan.h" #include "DFGValueSource.h" #include "JITOperations.h" #include "MarkedAllocator.h" #include "PutKind.h" #include "SpillRegistersMode.h" #include "StructureStubInfo.h" #include "ValueRecovery.h" #include "VirtualRegister.h" namespace JSC { namespace DFG { class GPRTemporary; class JSValueOperand; class SlowPathGenerator; class SpeculativeJIT; class SpeculateInt32Operand; class SpeculateStrictInt32Operand; class SpeculateDoubleOperand; class SpeculateCellOperand; class SpeculateBooleanOperand; enum GeneratedOperandType { GeneratedOperandTypeUnknown, GeneratedOperandInteger, GeneratedOperandJSValue}; inline GPRReg extractResult(GPRReg result) { return result; } #if USE(JSVALUE64) inline GPRReg extractResult(JSValueRegs result) { return result.gpr(); } #else inline JSValueRegs extractResult(JSValueRegs result) { return result; } #endif inline NoResultTag extractResult(NoResultTag) { return NoResult; } // === SpeculativeJIT === // // The SpeculativeJIT is used to generate a fast, but potentially // incomplete code path for the dataflow. When code generating // we may make assumptions about operand types, dynamically check, // and bail-out to an alternate code path if these checks fail. // Importantly, the speculative code path cannot be reentered once // a speculative check has failed. This allows the SpeculativeJIT // to propagate type information (including information that has // only speculatively been asserted) through the dataflow. class SpeculativeJIT { WTF_MAKE_FAST_ALLOCATED; friend struct OSRExit; private: typedef JITCompiler::TrustedImm32 TrustedImm32; typedef JITCompiler::Imm32 Imm32; typedef JITCompiler::TrustedImmPtr TrustedImmPtr; typedef JITCompiler::ImmPtr ImmPtr; typedef JITCompiler::TrustedImm64 TrustedImm64; typedef JITCompiler::Imm64 Imm64; // These constants are used to set priorities for spill order for // the register allocator. #if USE(JSVALUE64) enum SpillOrder { SpillOrderConstant = 1, // no spill, and cheap fill SpillOrderSpilled = 2, // no spill SpillOrderJS = 4, // needs spill SpillOrderCell = 4, // needs spill SpillOrderStorage = 4, // needs spill SpillOrderInteger = 5, // needs spill and box SpillOrderBoolean = 5, // needs spill and box SpillOrderDouble = 6, // needs spill and convert }; #elif USE(JSVALUE32_64) enum SpillOrder { SpillOrderConstant = 1, // no spill, and cheap fill SpillOrderSpilled = 2, // no spill SpillOrderJS = 4, // needs spill SpillOrderStorage = 4, // needs spill SpillOrderDouble = 4, // needs spill SpillOrderInteger = 5, // needs spill and box SpillOrderCell = 5, // needs spill and box SpillOrderBoolean = 5, // needs spill and box }; #endif enum UseChildrenMode { CallUseChildren, UseChildrenCalledExplicitly }; public: SpeculativeJIT(JITCompiler&); ~SpeculativeJIT(); bool compile(); void createOSREntries(); void linkOSREntries(LinkBuffer&); BasicBlock* nextBlock() { for (BlockIndex resultIndex = m_block->index + 1; ; resultIndex++) { if (resultIndex >= m_jit.graph().numBlocks()) return 0; if (BasicBlock* result = m_jit.graph().block(resultIndex)) return result; } } #if USE(JSVALUE64) GPRReg fillJSValue(Edge); #elif USE(JSVALUE32_64) bool fillJSValue(Edge, GPRReg&, GPRReg&, FPRReg&); #endif GPRReg fillStorage(Edge); // lock and unlock GPR & FPR registers. void lock(GPRReg reg) { m_gprs.lock(reg); } void lock(FPRReg reg) { m_fprs.lock(reg); } void unlock(GPRReg reg) { m_gprs.unlock(reg); } void unlock(FPRReg reg) { m_fprs.unlock(reg); } // Used to check whether a child node is on its last use, // and its machine registers may be reused. bool canReuse(Node* node) { return generationInfo(node).useCount() == 1; } bool canReuse(Node* nodeA, Node* nodeB) { return nodeA == nodeB && generationInfo(nodeA).useCount() == 2; } bool canReuse(Edge nodeUse) { return canReuse(nodeUse.node()); } GPRReg reuse(GPRReg reg) { m_gprs.lock(reg); return reg; } FPRReg reuse(FPRReg reg) { m_fprs.lock(reg); return reg; } // Allocate a gpr/fpr. GPRReg allocate() { #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset()); #endif VirtualRegister spillMe; GPRReg gpr = m_gprs.allocate(spillMe); if (spillMe.isValid()) { #if USE(JSVALUE32_64) GenerationInfo& info = generationInfoFromVirtualRegister(spillMe); if ((info.registerFormat() & DataFormatJS)) m_gprs.release(info.tagGPR() == gpr ? info.payloadGPR() : info.tagGPR()); #endif spill(spillMe); } return gpr; } GPRReg allocate(GPRReg specific) { #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset()); #endif VirtualRegister spillMe = m_gprs.allocateSpecific(specific); if (spillMe.isValid()) { #if USE(JSVALUE32_64) GenerationInfo& info = generationInfoFromVirtualRegister(spillMe); RELEASE_ASSERT(info.registerFormat() != DataFormatJSDouble); if ((info.registerFormat() & DataFormatJS)) m_gprs.release(info.tagGPR() == specific ? info.payloadGPR() : info.tagGPR()); #endif spill(spillMe); } return specific; } GPRReg tryAllocate() { return m_gprs.tryAllocate(); } FPRReg fprAllocate() { #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset()); #endif VirtualRegister spillMe; FPRReg fpr = m_fprs.allocate(spillMe); if (spillMe.isValid()) spill(spillMe); return fpr; } // Check whether a VirtualRegsiter is currently in a machine register. // We use this when filling operands to fill those that are already in // machine registers first (by locking VirtualRegsiters that are already // in machine register before filling those that are not we attempt to // avoid spilling values we will need immediately). bool isFilled(Node* node) { return generationInfo(node).registerFormat() != DataFormatNone; } bool isFilledDouble(Node* node) { return generationInfo(node).registerFormat() == DataFormatDouble; } // Called on an operand once it has been consumed by a parent node. void use(Node* node) { if (!node->hasResult()) return; GenerationInfo& info = generationInfo(node); // use() returns true when the value becomes dead, and any // associated resources may be freed. if (!info.use(*m_stream)) return; // Release the associated machine registers. DataFormat registerFormat = info.registerFormat(); #if USE(JSVALUE64) if (registerFormat == DataFormatDouble) m_fprs.release(info.fpr()); else if (registerFormat != DataFormatNone) m_gprs.release(info.gpr()); #elif USE(JSVALUE32_64) if (registerFormat == DataFormatDouble) m_fprs.release(info.fpr()); else if (registerFormat & DataFormatJS) { m_gprs.release(info.tagGPR()); m_gprs.release(info.payloadGPR()); } else if (registerFormat != DataFormatNone) m_gprs.release(info.gpr()); #endif } void use(Edge nodeUse) { use(nodeUse.node()); } RegisterSet usedRegisters(); bool masqueradesAsUndefinedWatchpointIsStillValid(const CodeOrigin& codeOrigin) { return m_jit.graph().masqueradesAsUndefinedWatchpointIsStillValid(codeOrigin); } bool masqueradesAsUndefinedWatchpointIsStillValid() { return masqueradesAsUndefinedWatchpointIsStillValid(m_currentNode->origin.semantic); } void storeToWriteBarrierBuffer(GPRReg cell, GPRReg scratch1, GPRReg scratch2); void writeBarrier(GPRReg owner, GPRReg scratch1, GPRReg scratch2); void writeBarrier(GPRReg owner, GPRReg value, Edge valueUse, GPRReg scratch1, GPRReg scratch2); void compileStoreBarrier(Node*); static GPRReg selectScratchGPR(GPRReg preserve1 = InvalidGPRReg, GPRReg preserve2 = InvalidGPRReg, GPRReg preserve3 = InvalidGPRReg, GPRReg preserve4 = InvalidGPRReg) { return AssemblyHelpers::selectScratchGPR(preserve1, preserve2, preserve3, preserve4); } // Called by the speculative operand types, below, to fill operand to // machine registers, implicitly generating speculation checks as needed. GPRReg fillSpeculateInt32(Edge, DataFormat& returnFormat); GPRReg fillSpeculateInt32Strict(Edge); GPRReg fillSpeculateInt52(Edge, DataFormat desiredFormat); FPRReg fillSpeculateDouble(Edge); GPRReg fillSpeculateCell(Edge); GPRReg fillSpeculateBoolean(Edge); GeneratedOperandType checkGeneratedTypeForToInt32(Node*); void addSlowPathGenerator(std::unique_ptr); void addSlowPathGenerator(std::function); void runSlowPathGenerators(PCToCodeOriginMapBuilder&); void compile(Node*); void noticeOSRBirth(Node*); void bail(AbortReason); void compileCurrentBlock(); void checkArgumentTypes(); void clearGenerationInfo(); // These methods are used when generating 'unexpected' // calls out from JIT code to C++ helper routines - // they spill all live values to the appropriate // slots in the JSStack without changing any state // in the GenerationInfo. SilentRegisterSavePlan silentSavePlanForGPR(VirtualRegister spillMe, GPRReg source); SilentRegisterSavePlan silentSavePlanForFPR(VirtualRegister spillMe, FPRReg source); void silentSpill(const SilentRegisterSavePlan&); void silentFill(const SilentRegisterSavePlan&, GPRReg canTrample); template void silentSpill(const CollectionType& savePlans) { for (unsigned i = 0; i < savePlans.size(); ++i) silentSpill(savePlans[i]); } template void silentFill(const CollectionType& savePlans, GPRReg exclude = InvalidGPRReg) { GPRReg canTrample = SpeculativeJIT::pickCanTrample(exclude); for (unsigned i = savePlans.size(); i--;) silentFill(savePlans[i], canTrample); } template void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg) { ASSERT(plans.isEmpty()); for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) { GPRReg gpr = iter.regID(); if (iter.name().isValid() && gpr != exclude && gpr != exclude2) { SilentRegisterSavePlan plan = silentSavePlanForGPR(iter.name(), gpr); if (doSpill) silentSpill(plan); plans.append(plan); } } for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) { if (iter.name().isValid() && iter.regID() != fprExclude) { SilentRegisterSavePlan plan = silentSavePlanForFPR(iter.name(), iter.regID()); if (doSpill) silentSpill(plan); plans.append(plan); } } } template void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, NoResultTag) { silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, InvalidFPRReg); } template void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, FPRReg exclude) { silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, exclude); } #if USE(JSVALUE32_64) template void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, JSValueRegs exclude) { silentSpillAllRegistersImpl(doSpill, plans, exclude.tagGPR(), exclude.payloadGPR()); } #endif void silentSpillAllRegisters(GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg) { silentSpillAllRegistersImpl(true, m_plans, exclude, exclude2, fprExclude); } void silentSpillAllRegisters(FPRReg exclude) { silentSpillAllRegisters(InvalidGPRReg, InvalidGPRReg, exclude); } void silentSpillAllRegisters(JSValueRegs exclude) { #if USE(JSVALUE64) silentSpillAllRegisters(exclude.payloadGPR()); #else silentSpillAllRegisters(exclude.payloadGPR(), exclude.tagGPR()); #endif } static GPRReg pickCanTrample(GPRReg exclude) { GPRReg result = GPRInfo::regT0; if (result == exclude) result = GPRInfo::regT1; return result; } static GPRReg pickCanTrample(FPRReg) { return GPRInfo::regT0; } static GPRReg pickCanTrample(NoResultTag) { return GPRInfo::regT0; } #if USE(JSVALUE64) static GPRReg pickCanTrample(JSValueRegs exclude) { return pickCanTrample(exclude.payloadGPR()); } #else static GPRReg pickCanTrample(JSValueRegs exclude) { GPRReg result = GPRInfo::regT0; if (result == exclude.tagGPR()) { result = GPRInfo::regT1; if (result == exclude.payloadGPR()) result = GPRInfo::regT2; } else if (result == exclude.payloadGPR()) { result = GPRInfo::regT1; if (result == exclude.tagGPR()) result = GPRInfo::regT2; } return result; } #endif template void silentFillAllRegisters(RegisterType exclude) { GPRReg canTrample = pickCanTrample(exclude); while (!m_plans.isEmpty()) { SilentRegisterSavePlan& plan = m_plans.last(); silentFill(plan, canTrample); m_plans.removeLast(); } } // These methods convert between doubles, and doubles boxed and JSValues. #if USE(JSVALUE64) GPRReg boxDouble(FPRReg fpr, GPRReg gpr) { return m_jit.boxDouble(fpr, gpr); } FPRReg unboxDouble(GPRReg gpr, GPRReg resultGPR, FPRReg fpr) { return m_jit.unboxDouble(gpr, resultGPR, fpr); } GPRReg boxDouble(FPRReg fpr) { return boxDouble(fpr, allocate()); } void boxInt52(GPRReg sourceGPR, GPRReg targetGPR, DataFormat); #elif USE(JSVALUE32_64) void boxDouble(FPRReg fpr, GPRReg tagGPR, GPRReg payloadGPR) { m_jit.boxDouble(fpr, tagGPR, payloadGPR); } void unboxDouble(GPRReg tagGPR, GPRReg payloadGPR, FPRReg fpr, FPRReg scratchFPR) { m_jit.unboxDouble(tagGPR, payloadGPR, fpr, scratchFPR); } #endif void boxDouble(FPRReg fpr, JSValueRegs regs) { m_jit.boxDouble(fpr, regs); } // Spill a VirtualRegister to the JSStack. void spill(VirtualRegister spillMe) { GenerationInfo& info = generationInfoFromVirtualRegister(spillMe); #if USE(JSVALUE32_64) if (info.registerFormat() == DataFormatNone) // it has been spilled. JS values which have two GPRs can reach here return; #endif // Check the GenerationInfo to see if this value need writing // to the JSStack - if not, mark it as spilled & return. if (!info.needsSpill()) { info.setSpilled(*m_stream, spillMe); return; } DataFormat spillFormat = info.registerFormat(); switch (spillFormat) { case DataFormatStorage: { // This is special, since it's not a JS value - as in it's not visible to JS // code. m_jit.storePtr(info.gpr(), JITCompiler::addressFor(spillMe)); info.spill(*m_stream, spillMe, DataFormatStorage); return; } case DataFormatInt32: { m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe)); info.spill(*m_stream, spillMe, DataFormatInt32); return; } #if USE(JSVALUE64) case DataFormatDouble: { m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe)); info.spill(*m_stream, spillMe, DataFormatDouble); return; } case DataFormatInt52: case DataFormatStrictInt52: { m_jit.store64(info.gpr(), JITCompiler::addressFor(spillMe)); info.spill(*m_stream, spillMe, spillFormat); return; } default: // The following code handles JSValues, int32s, and cells. RELEASE_ASSERT(spillFormat == DataFormatCell || spillFormat & DataFormatJS); GPRReg reg = info.gpr(); // We need to box int32 and cell values ... // but on JSVALUE64 boxing a cell is a no-op! if (spillFormat == DataFormatInt32) m_jit.or64(GPRInfo::tagTypeNumberRegister, reg); // Spill the value, and record it as spilled in its boxed form. m_jit.store64(reg, JITCompiler::addressFor(spillMe)); info.spill(*m_stream, spillMe, (DataFormat)(spillFormat | DataFormatJS)); return; #elif USE(JSVALUE32_64) case DataFormatCell: case DataFormatBoolean: { m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe)); info.spill(*m_stream, spillMe, spillFormat); return; } case DataFormatDouble: { // On JSVALUE32_64 boxing a double is a no-op. m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe)); info.spill(*m_stream, spillMe, DataFormatDouble); return; } default: // The following code handles JSValues. RELEASE_ASSERT(spillFormat & DataFormatJS); m_jit.store32(info.tagGPR(), JITCompiler::tagFor(spillMe)); m_jit.store32(info.payloadGPR(), JITCompiler::payloadFor(spillMe)); info.spill(*m_stream, spillMe, spillFormat); return; #endif } } bool isKnownInteger(Node* node) { return m_state.forNode(node).isType(SpecInt32Only); } bool isKnownCell(Node* node) { return m_state.forNode(node).isType(SpecCell); } bool isKnownNotInteger(Node* node) { return !(m_state.forNode(node).m_type & SpecInt32Only); } bool isKnownNotNumber(Node* node) { return !(m_state.forNode(node).m_type & SpecFullNumber); } bool isKnownNotCell(Node* node) { return !(m_state.forNode(node).m_type & SpecCell); } bool isKnownNotOther(Node* node) { return !(m_state.forNode(node).m_type & SpecOther); } UniquedStringImpl* identifierUID(unsigned index) { return m_jit.graph().identifiers()[index]; } // Spill all VirtualRegisters back to the JSStack. void flushRegisters() { for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) { if (iter.name().isValid()) { spill(iter.name()); iter.release(); } } for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) { if (iter.name().isValid()) { spill(iter.name()); iter.release(); } } } // Used to ASSERT flushRegisters() has been called prior to // calling out from JIT code to a C helper function. bool isFlushed() { for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) { if (iter.name().isValid()) return false; } for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) { if (iter.name().isValid()) return false; } return true; } #if USE(JSVALUE64) static MacroAssembler::Imm64 valueOfJSConstantAsImm64(Node* node) { return MacroAssembler::Imm64(JSValue::encode(node->asJSValue())); } #endif // Helper functions to enable code sharing in implementations of bit/shift ops. void bitOp(NodeType op, int32_t imm, GPRReg op1, GPRReg result) { switch (op) { case BitAnd: m_jit.and32(Imm32(imm), op1, result); break; case BitOr: m_jit.or32(Imm32(imm), op1, result); break; case BitXor: m_jit.xor32(Imm32(imm), op1, result); break; default: RELEASE_ASSERT_NOT_REACHED(); } } void bitOp(NodeType op, GPRReg op1, GPRReg op2, GPRReg result) { switch (op) { case BitAnd: m_jit.and32(op1, op2, result); break; case BitOr: m_jit.or32(op1, op2, result); break; case BitXor: m_jit.xor32(op1, op2, result); break; default: RELEASE_ASSERT_NOT_REACHED(); } } void shiftOp(NodeType op, GPRReg op1, int32_t shiftAmount, GPRReg result) { switch (op) { case BitRShift: m_jit.rshift32(op1, Imm32(shiftAmount), result); break; case BitLShift: m_jit.lshift32(op1, Imm32(shiftAmount), result); break; case BitURShift: m_jit.urshift32(op1, Imm32(shiftAmount), result); break; default: RELEASE_ASSERT_NOT_REACHED(); } } void shiftOp(NodeType op, GPRReg op1, GPRReg shiftAmount, GPRReg result) { switch (op) { case BitRShift: m_jit.rshift32(op1, shiftAmount, result); break; case BitLShift: m_jit.lshift32(op1, shiftAmount, result); break; case BitURShift: m_jit.urshift32(op1, shiftAmount, result); break; default: RELEASE_ASSERT_NOT_REACHED(); } } // Returns the index of the branch node if peephole is okay, UINT_MAX otherwise. unsigned detectPeepHoleBranch() { // Check that no intervening nodes will be generated. for (unsigned index = m_indexInBlock + 1; index < m_block->size() - 1; ++index) { Node* node = m_block->at(index); if (!node->shouldGenerate()) continue; // Check if it's a Phantom that can be safely ignored. if (node->op() == Phantom && !node->child1()) continue; return UINT_MAX; } // Check if the lastNode is a branch on this node. Node* lastNode = m_block->terminal(); return lastNode->op() == Branch && lastNode->child1() == m_currentNode ? m_block->size() - 1 : UINT_MAX; } void compileMovHint(Node*); void compileMovHintAndCheck(Node*); void cachedGetById(CodeOrigin, JSValueRegs base, JSValueRegs result, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill, AccessType = AccessType::Get); #if USE(JSVALUE64) void cachedGetById(CodeOrigin, GPRReg baseGPR, GPRReg resultGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill, AccessType = AccessType::Get); void cachedPutById(CodeOrigin, GPRReg base, GPRReg value, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill); #elif USE(JSVALUE32_64) void cachedGetById(CodeOrigin, GPRReg baseTagGPROrNone, GPRReg basePayloadGPR, GPRReg resultTagGPR, GPRReg resultPayloadGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill, AccessType = AccessType::Get); void cachedPutById(CodeOrigin, GPRReg basePayloadGPR, GPRReg valueTagGPR, GPRReg valuePayloadGPR, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill); #endif void compileDeleteById(Node*); void compileDeleteByVal(Node*); void compileTryGetById(Node*); void compileIn(Node*); void compileBaseValueStoreBarrier(Edge& baseEdge, Edge& valueEdge); void nonSpeculativeNonPeepholeCompareNullOrUndefined(Edge operand); void nonSpeculativePeepholeBranchNullOrUndefined(Edge operand, Node* branchNode); void nonSpeculativePeepholeBranch(Node*, Node* branchNode, MacroAssembler::RelationalCondition, S_JITOperation_EJJ helperFunction); void nonSpeculativeNonPeepholeCompare(Node*, MacroAssembler::RelationalCondition, S_JITOperation_EJJ helperFunction); bool nonSpeculativeCompare(Node*, MacroAssembler::RelationalCondition, S_JITOperation_EJJ helperFunction); void nonSpeculativePeepholeStrictEq(Node*, Node* branchNode, bool invert = false); void nonSpeculativeNonPeepholeStrictEq(Node*, bool invert = false); bool nonSpeculativeStrictEq(Node*, bool invert = false); void compileInstanceOfForObject(Node*, GPRReg valueReg, GPRReg prototypeReg, GPRReg scratchAndResultReg, GPRReg scratch2Reg); void compileInstanceOf(Node*); void compileInstanceOfCustom(Node*); void compileIsRegExpObject(Node*); void emitCall(Node*); // Called once a node has completed code generation but prior to setting // its result, to free up its children. (This must happen prior to setting // the nodes result, since the node may have the same VirtualRegister as // a child, and as such will use the same GeneratioInfo). void useChildren(Node*); // These method called to initialize the the GenerationInfo // to describe the result of an operation. void int32Result(GPRReg reg, Node* node, DataFormat format = DataFormatInt32, UseChildrenMode mode = CallUseChildren) { if (mode == CallUseChildren) useChildren(node); VirtualRegister virtualRegister = node->virtualRegister(); GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); if (format == DataFormatInt32) { m_jit.jitAssertIsInt32(reg); m_gprs.retain(reg, virtualRegister, SpillOrderInteger); info.initInt32(node, node->refCount(), reg); } else { #if USE(JSVALUE64) RELEASE_ASSERT(format == DataFormatJSInt32); m_jit.jitAssertIsJSInt32(reg); m_gprs.retain(reg, virtualRegister, SpillOrderJS); info.initJSValue(node, node->refCount(), reg, format); #elif USE(JSVALUE32_64) RELEASE_ASSERT_NOT_REACHED(); #endif } } void int32Result(GPRReg reg, Node* node, UseChildrenMode mode) { int32Result(reg, node, DataFormatInt32, mode); } void int52Result(GPRReg reg, Node* node, DataFormat format, UseChildrenMode mode = CallUseChildren) { if (mode == CallUseChildren) useChildren(node); VirtualRegister virtualRegister = node->virtualRegister(); GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); m_gprs.retain(reg, virtualRegister, SpillOrderJS); info.initInt52(node, node->refCount(), reg, format); } void int52Result(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) { int52Result(reg, node, DataFormatInt52, mode); } void strictInt52Result(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) { int52Result(reg, node, DataFormatStrictInt52, mode); } void noResult(Node* node, UseChildrenMode mode = CallUseChildren) { if (mode == UseChildrenCalledExplicitly) return; useChildren(node); } void cellResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) { if (mode == CallUseChildren) useChildren(node); VirtualRegister virtualRegister = node->virtualRegister(); m_gprs.retain(reg, virtualRegister, SpillOrderCell); GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); info.initCell(node, node->refCount(), reg); } void blessedBooleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) { #if USE(JSVALUE64) jsValueResult(reg, node, DataFormatJSBoolean, mode); #else booleanResult(reg, node, mode); #endif } void unblessedBooleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) { #if USE(JSVALUE64) blessBoolean(reg); #endif blessedBooleanResult(reg, node, mode); } #if USE(JSVALUE64) void jsValueResult(GPRReg reg, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren) { if (format == DataFormatJSInt32) m_jit.jitAssertIsJSInt32(reg); if (mode == CallUseChildren) useChildren(node); VirtualRegister virtualRegister = node->virtualRegister(); m_gprs.retain(reg, virtualRegister, SpillOrderJS); GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); info.initJSValue(node, node->refCount(), reg, format); } void jsValueResult(GPRReg reg, Node* node, UseChildrenMode mode) { jsValueResult(reg, node, DataFormatJS, mode); } #elif USE(JSVALUE32_64) void booleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) { if (mode == CallUseChildren) useChildren(node); VirtualRegister virtualRegister = node->virtualRegister(); m_gprs.retain(reg, virtualRegister, SpillOrderBoolean); GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); info.initBoolean(node, node->refCount(), reg); } void jsValueResult(GPRReg tag, GPRReg payload, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren) { if (mode == CallUseChildren) useChildren(node); VirtualRegister virtualRegister = node->virtualRegister(); m_gprs.retain(tag, virtualRegister, SpillOrderJS); m_gprs.retain(payload, virtualRegister, SpillOrderJS); GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); info.initJSValue(node, node->refCount(), tag, payload, format); } void jsValueResult(GPRReg tag, GPRReg payload, Node* node, UseChildrenMode mode) { jsValueResult(tag, payload, node, DataFormatJS, mode); } #endif void jsValueResult(JSValueRegs regs, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren) { #if USE(JSVALUE64) jsValueResult(regs.gpr(), node, format, mode); #else jsValueResult(regs.tagGPR(), regs.payloadGPR(), node, format, mode); #endif } void storageResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) { if (mode == CallUseChildren) useChildren(node); VirtualRegister virtualRegister = node->virtualRegister(); m_gprs.retain(reg, virtualRegister, SpillOrderStorage); GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); info.initStorage(node, node->refCount(), reg); } void doubleResult(FPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren) { if (mode == CallUseChildren) useChildren(node); VirtualRegister virtualRegister = node->virtualRegister(); m_fprs.retain(reg, virtualRegister, SpillOrderDouble); GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister); info.initDouble(node, node->refCount(), reg); } void initConstantInfo(Node* node) { ASSERT(node->hasConstant()); generationInfo(node).initConstant(node, node->refCount()); } // These methods add calls to C++ helper functions. // These methods are broadly value representation specific (i.e. // deal with the fact that a JSValue may be passed in one or two // machine registers, and delegate the calling convention specific // decision as to how to fill the regsiters to setupArguments* methods. JITCompiler::Call callOperation(V_JITOperation_E operation) { m_jit.setupArgumentsExecState(); return appendCall(operation); } JITCompiler::Call callOperation(P_JITOperation_E operation, GPRReg result) { m_jit.setupArgumentsExecState(); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EC operation, GPRReg result, GPRReg cell) { m_jit.setupArgumentsWithExecState(cell); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EO operation, GPRReg result, GPRReg object) { m_jit.setupArgumentsWithExecState(object); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EOS operation, GPRReg result, GPRReg object, size_t size) { m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EOZ operation, GPRReg result, GPRReg object, int32_t size) { m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EOZ operation, GPRReg result, GPRReg object, int32_t size) { m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(static_cast(size))); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EPS operation, GPRReg result, GPRReg old, size_t size) { m_jit.setupArgumentsWithExecState(old, TrustedImmPtr(size)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_ES operation, GPRReg result, size_t size) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(size)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_ESJss operation, GPRReg result, size_t index, GPRReg arg1) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(index), arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_ESt operation, GPRReg result, Structure* structure) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EStZ operation, GPRReg result, Structure* structure, GPRReg arg2) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EStZ operation, GPRReg result, Structure* structure, size_t arg2) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(arg2)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EStZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EStPS operation, GPRReg result, Structure* structure, void* pointer, size_t size) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(pointer), TrustedImmPtr(size)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EStSS operation, GPRReg result, Structure* structure, size_t index, size_t size) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(index), TrustedImmPtr(size)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_E operation, GPRReg result) { m_jit.setupArgumentsExecState(); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EC operation, GPRReg result, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EC operation, GPRReg result, JSCell* cell) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_ECZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_ECZC operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJscC operation, GPRReg result, GPRReg arg1, JSCell* cell) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EIcf operation, GPRReg result, InlineCallFrame* inlineCallFrame) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(inlineCallFrame)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_ESt operation, GPRReg result, Structure* structure) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure)); return appendCallSetResult(operation, result); } #if USE(JSVALUE64) JITCompiler::Call callOperation(C_JITOperation_EStJscSymtabJ operation, GPRReg result, Structure* structure, GPRReg scope, SymbolTable* table, TrustedImm64 initialValue) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), scope, TrustedImmPtr(table), initialValue); return appendCallSetResult(operation, result); } #else JITCompiler::Call callOperation(C_JITOperation_EStJscSymtabJ operation, GPRReg result, Structure* structure, GPRReg scope, SymbolTable* table, TrustedImm32 tag, TrustedImm32 payload) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), scope, TrustedImmPtr(table), payload, tag); return appendCallSetResult(operation, result); } #endif JITCompiler::Call callOperation(C_JITOperation_EStZ operation, GPRReg result, Structure* structure, unsigned knownLength) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(knownLength)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EStZZ operation, GPRReg result, Structure* structure, unsigned knownLength, unsigned minCapacity) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(knownLength), TrustedImm32(minCapacity)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EStZ operation, GPRReg result, Structure* structure, GPRReg length) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), length); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EStZZ operation, GPRReg result, Structure* structure, GPRReg length, unsigned minCapacity) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), length, TrustedImm32(minCapacity)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJssSt operation, GPRReg result, GPRReg arg1, Structure* structure) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(structure)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJssJss operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_B_EJssJss operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_TT operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArguments(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJssJssJss operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EGC operation, GPRReg result, JSGlobalObject* globalObject, GPRReg arg2) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(globalObject), arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EGC operation, GPRReg result, JSGlobalObject* globalObject, GPRReg arg2) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(globalObject), arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(Jss_JITOperation_EZ operation, GPRReg result, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(V_JITOperation_EC operation, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EC operation, JSCell* arg1) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(arg1)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECIcf operation, GPRReg arg1, InlineCallFrame* inlineCallFrame) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(inlineCallFrame)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECCIcf operation, GPRReg arg1, GPRReg arg2, InlineCallFrame* inlineCallFrame) { m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(inlineCallFrame)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECZ operation, GPRReg arg1, int arg2) { m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECC operation, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECC operation, GPRReg arg1, JSCell* arg2) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(arg2)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECC operation, JSCell* arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(arg1), arg2); return appendCall(operation); } JITCompiler::Call callOperationWithCallFrameRollbackOnException(V_JITOperation_ECb operation, void* pointer) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer)); return appendCallWithCallFrameRollbackOnException(operation); } JITCompiler::Call callOperationWithCallFrameRollbackOnException(Z_JITOperation_E operation, GPRReg result) { m_jit.setupArgumentsExecState(); return appendCallWithCallFrameRollbackOnExceptionSetResult(operation, result); } JITCompiler::Call callOperation(Z_JITOperation_EC operation, GPRReg result, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(V_JITOperation_ECIZC operation, GPRReg regOp1, UniquedStringImpl* identOp2, int32_t op3, GPRReg regOp4) { m_jit.setupArgumentsWithExecState(regOp1, TrustedImmPtr(identOp2), TrustedImm32(op3), regOp4); return appendCall(operation); } template JITCompiler::Call callOperation(FunctionType operation, NoResultTag, Args... args) { return callOperation(operation, args...); } JITCompiler::Call callOperation(D_JITOperation_ZZ operation, FPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArguments(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(D_JITOperation_D operation, FPRReg result, FPRReg arg1) { m_jit.setupArguments(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(D_JITOperation_DD operation, FPRReg result, FPRReg arg1, FPRReg arg2) { m_jit.setupArguments(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(T_JITOperation_EJss operation, GPRReg result, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJscZ operation, GPRReg result, GPRReg arg1, int32_t arg2) { m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EZ operation, GPRReg result, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EZ operation, GPRReg result, int32_t arg1) { m_jit.setupArgumentsWithExecState(TrustedImm32(arg1)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJscC operation, GPRReg result, GPRReg arg1, JSCell* cell) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJscCJ operation, GPRReg result, GPRReg arg1, JSCell* cell, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell), arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EGReoJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EGReoJss operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(V_JITOperation_EWs operation, WatchpointSet* watchpointSet) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(watchpointSet)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECRUiUi operation, GPRReg arg1, GPRReg arg2, Imm32 arg3, GPRReg arg4) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3.asTrustedImm32(), arg4); return appendCall(operation); } JITCompiler::Call callOperation(C_JITOperation_EJscI operation, GPRReg result, GPRReg arg1, UniquedStringImpl* impl) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(impl)); return appendCallSetResult(operation, result); } #if USE(JSVALUE64) JITCompiler::Call callOperation(J_JITOperation_EJJI operation, GPRReg result, GPRReg arg1, GPRReg arg2, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(uid)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(V_JITOperation_EJJJI operation, GPRReg arg1, GPRReg arg2, GPRReg arg3, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3, TrustedImmPtr(uid)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EJJJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3, arg4); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EOJIUi operation, GPRReg arg1, GPRReg arg2, UniquedStringImpl* impl, unsigned value) { m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(impl), TrustedImm32(value)); return appendCall(operation); } JITCompiler::Call callOperation(J_JITOperation_EOIUi operation, GPRReg result, GPRReg arg1, UniquedStringImpl* impl, unsigned value) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(impl), TrustedImm32(value)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_E operation, GPRReg result) { m_jit.setupArgumentsExecState(); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg result, void* pointer) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(Z_JITOperation_D operation, GPRReg result, FPRReg arg1) { m_jit.setupArguments(arg1); JITCompiler::Call call = m_jit.appendCall(operation); m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result); return call; } JITCompiler::Call callOperation(Q_JITOperation_J operation, GPRReg result, GPRReg value) { m_jit.setupArguments(value); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(Q_JITOperation_D operation, GPRReg result, FPRReg value) { m_jit.setupArguments(value); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EI operation, GPRReg result, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(uid)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EA operation, GPRReg result, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EAZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJssReo operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJssReoJss operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJssZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EPS operation, GPRReg result, void* pointer, size_t size) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_ESS operation, GPRReg result, int startConstant, int numConstants) { m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EPP operation, GPRReg result, GPRReg arg1, void* pointer) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EC operation, GPRReg result, JSCell* cell) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_ECZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_ESsiCI operation, GPRReg result, StructureStubInfo* stubInfo, GPRReg arg1, const UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, TrustedImmPtr(uid)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_ESsiJI operation, GPRReg result, StructureStubInfo* stubInfo, GPRReg arg1, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, TrustedImmPtr(uid)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EDA operation, GPRReg result, FPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJC operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJA operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg result, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg result, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg result, int32_t arg1) { m_jit.setupArgumentsWithExecState(TrustedImm32(arg1)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EZZ operation, GPRReg result, int32_t arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EZIcfZ operation, GPRReg result, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2) { m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EJS operation, GPRReg result, GPRReg value, size_t index) { m_jit.setupArgumentsWithExecState(value, TrustedImmPtr(index)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EStJ operation, GPRReg result, Structure* structure, GPRReg arg2) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJ operation, GPRReg result, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJJC operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJZ operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJZC operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_J operation, GPRReg result, GPRReg arg1) { m_jit.setupArguments(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EJ operation, GPRReg result, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJ operation, JSValueRegs result, JSValueRegs arg1) { return callOperation(operation, result.payloadGPR(), arg1.payloadGPR()); } JITCompiler::Call callOperation(J_JITOperation_EJ operation, GPRReg result, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EJI operation, GPRReg result, GPRReg arg1, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(uid)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EJI operation, GPRReg result, JSValueRegs arg1, UniquedStringImpl* uid) { return callOperation(operation, result, arg1.gpr(), uid); } JITCompiler::Call callOperation(S_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EJJ operation, GPRReg result, JSValueRegs arg1, JSValueRegs arg2) { return callOperation(operation, result, arg1.gpr(), arg2.gpr()); } JITCompiler::Call callOperation(S_JITOperation_EGJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EGReoJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EGReoJss operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EPP operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EGJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg result, GPRReg arg1, int32_t imm) { m_jit.setupArgumentsWithExecState(arg1, MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm)))); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg result, int32_t imm, GPRReg arg2) { m_jit.setupArgumentsWithExecState(MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm))), arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJJ operation, JSValueRegs result, JSValueRegs arg1, JSValueRegs arg2) { return callOperation(operation, result.payloadGPR(), arg1.payloadGPR(), arg2.payloadGPR()); } JITCompiler::Call callOperation(J_JITOperation_EJJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg result, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg result, GPRReg arg1, JSValueRegs arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2.gpr()); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(V_JITOperation_EOZD operation, GPRReg arg1, GPRReg arg2, FPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EJ operation, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EJPP operation, GPRReg arg1, GPRReg arg2, void* pointer) { m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(pointer)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ESsiJJI operation, StructureStubInfo* stubInfo, GPRReg arg1, GPRReg arg2, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, arg2, TrustedImmPtr(uid)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EJJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECJ operation, GPRReg arg1, JSValueRegs arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2.payloadGPR()); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCall(operation); } JITCompiler::Call callOperation(Z_JITOperation_EJZZ operation, GPRReg result, GPRReg arg1, unsigned arg2, unsigned arg3) { m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2), TrustedImm32(arg3)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(F_JITOperation_EFJZZ operation, GPRReg result, GPRReg arg1, GPRReg arg2, unsigned arg3, GPRReg arg4) { m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImm32(arg3), arg4); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, JSValueRegs arg1, GPRReg arg2, JSValueRegs arg3) { return callOperation(operation, result, arg1.payloadGPR(), arg2, arg3.payloadGPR()); } JITCompiler::Call callOperation(Z_JITOperation_EJZ operation, GPRReg result, GPRReg arg1, unsigned arg2) { m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(V_JITOperation_EZJZZZ operation, unsigned arg1, GPRReg arg2, unsigned arg3, GPRReg arg4, unsigned arg5) { m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2, TrustedImm32(arg3), arg4, TrustedImm32(arg5)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECJZC operation, GPRReg regOp1, GPRReg regOp2, int32_t op3, GPRReg regOp4) { m_jit.setupArgumentsWithExecState(regOp1, regOp2, TrustedImm32(op3), regOp4); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECIZJJ operation, GPRReg regOp1, UniquedStringImpl* identOp2, int32_t op3, GPRReg regOp4, GPRReg regOp5) { m_jit.setupArgumentsWithExecState(regOp1, TrustedImmPtr(identOp2), TrustedImm32(op3), regOp4, regOp5); return appendCall(operation); } #else // USE(JSVALUE32_64) JITCompiler::Call callOperation(J_JITOperation_EJJI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag, TrustedImmPtr(uid)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(V_JITOperation_EJJJI operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag, arg3Payload, arg3Tag, TrustedImmPtr(uid)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EJJJJ operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload, GPRReg arg4Tag, GPRReg arg4Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag, arg3Payload, arg3Tag, arg4Payload, arg4Tag); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EOJIUi operation, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, UniquedStringImpl* impl, unsigned value) { m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, TrustedImmPtr(impl), TrustedImm32(value)); return appendCall(operation); } JITCompiler::Call callOperation(J_JITOperation_EOIUi operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, UniquedStringImpl* impl, unsigned value) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(impl), TrustedImm32(value)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(D_JITOperation_G operation, FPRReg result, JSGlobalObject* globalObject) { m_jit.setupArguments(TrustedImmPtr(globalObject)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(Z_JITOperation_D operation, GPRReg result, FPRReg arg1) { prepareForExternalCall(); m_jit.setupArguments(arg1); JITCompiler::Call call = m_jit.appendCall(operation); m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result); return call; } JITCompiler::Call callOperation(J_JITOperation_E operation, GPRReg resultTag, GPRReg resultPayload) { m_jit.setupArgumentsExecState(); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, void* pointer) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EPP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, void* pointer) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EI operation, GPRReg resultTag, GPRReg resultPayload, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(uid)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EAZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJ operation, JSValueRegs result, JSValueRegs arg1) { return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1.tagGPR(), arg1.payloadGPR()); } JITCompiler::Call callOperation(J_JITOperation_EJ operation, GPRReg resultPayload, GPRReg resultTag, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJssZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJssReo operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJssReoJss operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EPS operation, GPRReg resultTag, GPRReg resultPayload, void* pointer, size_t size) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_ESS operation, GPRReg resultTag, GPRReg resultPayload, int startConstant, int numConstants) { m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, void* pointer) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImmPtr(pointer)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EC operation, GPRReg resultTag, GPRReg resultPayload, JSCell* cell) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_ECZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJscC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, JSCell* cell) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJscCJ operation, GPRReg result, GPRReg arg1, JSCell* cell, GPRReg arg2Tag, GPRReg arg2Payload) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell), EABI_32BIT_DUMMY_ARG arg2Payload, arg2Tag); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EGReoJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload) { m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG arg3Payload, arg3Tag); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EGReoJss operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_ESsiCI operation, GPRReg resultTag, GPRReg resultPayload, StructureStubInfo* stubInfo, GPRReg arg1, const UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1, TrustedImmPtr(uid)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_ESsiJI operation, GPRReg resultTag, GPRReg resultPayload, StructureStubInfo* stubInfo, GPRReg arg1Tag, GPRReg arg1Payload, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1Payload, arg1Tag, TrustedImmPtr(uid)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_ESsiJI operation, GPRReg resultTag, GPRReg resultPayload, StructureStubInfo* stubInfo, int32_t arg1Tag, GPRReg arg1Payload, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1Payload, TrustedImm32(arg1Tag), TrustedImmPtr(uid)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EDA operation, GPRReg resultTag, GPRReg resultPayload, FPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1, arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, TrustedImm32 arg1Tag, GPRReg arg1Payload, GPRReg arg2) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1) { m_jit.setupArgumentsWithExecState(arg1); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1) { m_jit.setupArgumentsWithExecState(TrustedImm32(arg1)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EZIcfZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2) { m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EZZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(P_JITOperation_EJS operation, GPRReg result, JSValueRegs value, size_t index) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG value.payloadGPR(), value.tagGPR(), TrustedImmPtr(index)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(P_JITOperation_EStJ operation, GPRReg result, Structure* structure, GPRReg arg2Tag, GPRReg arg2Payload) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2Payload, arg2Tag); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(C_JITOperation_EJJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag, arg3Payload, arg3Tag); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EJI operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImmPtr(uid)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EJI operation, GPRReg result, JSValueRegs arg1Regs, UniquedStringImpl* uid) { return callOperation(operation, result, arg1Regs.tagGPR(), arg1Regs.payloadGPR(), uid); } JITCompiler::Call callOperation(S_JITOperation_EJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EJJ operation, GPRReg result, JSValueRegs arg1, JSValueRegs arg2) { return callOperation(operation, result, arg1.tagGPR(), arg1.payloadGPR(), arg2.tagGPR(), arg2.payloadGPR()); } JITCompiler::Call callOperation(S_JITOperation_EGJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload) { m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EGReoJ operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload) { m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG arg3Payload, arg3Tag); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(S_JITOperation_EGReoJss operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, arg3); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EGJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload) { m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, MacroAssembler::TrustedImm32 imm) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG imm, TrustedImm32(JSValue::Int32Tag)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, MacroAssembler::TrustedImm32 imm, GPRReg arg2Tag, GPRReg arg2Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG imm, TrustedImm32(JSValue::Int32Tag), SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_EJJ operation, JSValueRegs result, JSValueRegs arg1, JSValueRegs arg2) { return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1.tagGPR(), arg1.payloadGPR(), arg2.tagGPR(), arg2.payloadGPR()); } JITCompiler::Call callOperation(J_JITOperation_EJJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag, arg3Payload, arg3Tag); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload) { m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_ECJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2Payload) { m_jit.setupArgumentsWithExecState(arg1, arg2Payload, MacroAssembler::TrustedImm32(JSValue::CellTag)); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(J_JITOperation_ECJ operation, JSValueRegs result, GPRReg arg1, JSValueRegs arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2.payloadGPR(), arg2.tagGPR()); return appendCallSetResult(operation, result.payloadGPR(), result.tagGPR()); } JITCompiler::Call callOperation(J_JITOperation_ECC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2); return appendCallSetResult(operation, resultPayload, resultTag); } JITCompiler::Call callOperation(V_JITOperation_EOZD operation, GPRReg arg1, GPRReg arg2, FPRReg arg3) { m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG arg3); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EJ operation, GPRReg arg1Tag, GPRReg arg1Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EJPP operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, void* pointer) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, TrustedImmPtr(pointer)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ESsiJJI operation, StructureStubInfo* stubInfo, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Payload, UniquedStringImpl* uid) { m_jit.setupArgumentsWithExecState(TrustedImmPtr(stubInfo), arg1Payload, arg1Tag, arg2Payload, TrustedImm32(JSValue::CellTag), TrustedImmPtr(uid)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECJ operation, GPRReg arg1, JSValueRegs arg2) { m_jit.setupArgumentsWithExecState(arg1, arg2.payloadGPR(), arg2.tagGPR()); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECJJ operation, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload) { m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, arg3Payload, arg3Tag); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload) { m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload) { m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, TrustedImm32 arg3Tag, GPRReg arg3Payload) { m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag); return appendCall(operation); } JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, EABI_32BIT_DUMMY_ARG arg3Payload, arg3Tag); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(Z_JITOperation_EJOJ operation, GPRReg result, JSValueRegs arg1, GPRReg arg2, JSValueRegs arg3) { return callOperation(operation, result, arg1.tagGPR(), arg1.payloadGPR(), arg2, arg3.tagGPR(), arg3.payloadGPR()); } JITCompiler::Call callOperation(Z_JITOperation_EJZZ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, unsigned arg2, unsigned arg3) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImm32(arg2), TrustedImm32(arg3)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(F_JITOperation_EFJZZ operation, GPRReg result, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, unsigned arg3, GPRReg arg4) { m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, TrustedImm32(arg3), arg4); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(Z_JITOperation_EJZ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, unsigned arg2) { m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImm32(arg2)); return appendCallSetResult(operation, result); } JITCompiler::Call callOperation(V_JITOperation_EZJZZZ operation, unsigned arg1, GPRReg arg2Tag, GPRReg arg2Payload, unsigned arg3, GPRReg arg4, unsigned arg5) { m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2Payload, arg2Tag, TrustedImm32(arg3), arg4, TrustedImm32(arg5)); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECJZC operation, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, int32_t arg3, GPRReg arg4) { m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, TrustedImm32(arg3), arg4); return appendCall(operation); } JITCompiler::Call callOperation(V_JITOperation_ECIZCC operation, GPRReg arg1, UniquedStringImpl* identOp2, int32_t op3, GPRReg arg4, GPRReg arg5) { m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identOp2), TrustedImm32(op3), arg4, arg5); return appendCall(operation); } template JITCompiler::Call callOperation( FunctionType operation, JSValueRegs result) { return callOperation(operation, result.tagGPR(), result.payloadGPR()); } template JITCompiler::Call callOperation( FunctionType operation, JSValueRegs result, ArgumentType1 arg1) { return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1); } template JITCompiler::Call callOperation( FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2) { return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2); } template< typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3> JITCompiler::Call callOperation( FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3) { return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3); } template< typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3, typename ArgumentType4> JITCompiler::Call callOperation( FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3, ArgumentType4 arg4) { return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4); } template< typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3, typename ArgumentType4, typename ArgumentType5> JITCompiler::Call callOperation( FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3, ArgumentType4 arg4, ArgumentType5 arg5) { return callOperation( operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4, arg5); } #endif // USE(JSVALUE32_64) #if !defined(NDEBUG) && !CPU(ARM) && !CPU(MIPS) && !CPU(SH4) void prepareForExternalCall() { // We're about to call out to a "native" helper function. The helper // function is expected to set topCallFrame itself with the ExecState // that is passed to it. // // We explicitly trash topCallFrame here so that we'll know if some of // the helper functions are not setting topCallFrame when they should // be doing so. Note: the previous value in topcallFrame was not valid // anyway since it was not being updated by JIT'ed code by design. for (unsigned i = 0; i < sizeof(void*) / 4; i++) m_jit.store32(TrustedImm32(0xbadbeef), reinterpret_cast(&m_jit.vm()->topCallFrame) + i * 4); } #else void prepareForExternalCall() { } #endif // These methods add call instructions, optionally setting results, and optionally rolling back the call frame on an exception. JITCompiler::Call appendCall(const FunctionPtr& function) { prepareForExternalCall(); m_jit.emitStoreCodeOrigin(m_currentNode->origin.semantic); return m_jit.appendCall(function); } JITCompiler::Call appendCallWithCallFrameRollbackOnException(const FunctionPtr& function) { JITCompiler::Call call = appendCall(function); m_jit.exceptionCheckWithCallFrameRollback(); return call; } JITCompiler::Call appendCallWithCallFrameRollbackOnExceptionSetResult(const FunctionPtr& function, GPRReg result) { JITCompiler::Call call = appendCallWithCallFrameRollbackOnException(function); if ((result != InvalidGPRReg) && (result != GPRInfo::returnValueGPR)) m_jit.move(GPRInfo::returnValueGPR, result); return call; } JITCompiler::Call appendCallSetResult(const FunctionPtr& function, GPRReg result) { JITCompiler::Call call = appendCall(function); if (result != InvalidGPRReg) m_jit.move(GPRInfo::returnValueGPR, result); return call; } JITCompiler::Call appendCallSetResult(const FunctionPtr& function, GPRReg result1, GPRReg result2) { JITCompiler::Call call = appendCall(function); m_jit.setupResults(result1, result2); return call; } #if CPU(X86) JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result) { JITCompiler::Call call = appendCall(function); if (result != InvalidFPRReg) { m_jit.assembler().fstpl(0, JITCompiler::stackPointerRegister); m_jit.loadDouble(JITCompiler::stackPointerRegister, result); } return call; } #elif CPU(ARM) && !CPU(ARM_HARDFP) JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result) { JITCompiler::Call call = appendCall(function); if (result != InvalidFPRReg) m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2); return call; } #else // CPU(X86_64) || (CPU(ARM) && CPU(ARM_HARDFP)) || CPU(ARM64) || CPU(MIPS) || CPU(SH4) JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result) { JITCompiler::Call call = appendCall(function); if (result != InvalidFPRReg) m_jit.moveDouble(FPRInfo::returnValueFPR, result); return call; } #endif void branchDouble(JITCompiler::DoubleCondition cond, FPRReg left, FPRReg right, BasicBlock* destination) { return addBranch(m_jit.branchDouble(cond, left, right), destination); } void branchDoubleNonZero(FPRReg value, FPRReg scratch, BasicBlock* destination) { return addBranch(m_jit.branchDoubleNonZero(value, scratch), destination); } template void branch32(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination) { return addBranch(m_jit.branch32(cond, left, right), destination); } template void branchTest32(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination) { return addBranch(m_jit.branchTest32(cond, value, mask), destination); } template void branchTest32(JITCompiler::ResultCondition cond, T value, BasicBlock* destination) { return addBranch(m_jit.branchTest32(cond, value), destination); } #if USE(JSVALUE64) template void branch64(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination) { return addBranch(m_jit.branch64(cond, left, right), destination); } #endif template void branch8(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination) { return addBranch(m_jit.branch8(cond, left, right), destination); } template void branchPtr(JITCompiler::RelationalCondition cond, T left, U right, BasicBlock* destination) { return addBranch(m_jit.branchPtr(cond, left, right), destination); } template void branchTestPtr(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination) { return addBranch(m_jit.branchTestPtr(cond, value, mask), destination); } template void branchTestPtr(JITCompiler::ResultCondition cond, T value, BasicBlock* destination) { return addBranch(m_jit.branchTestPtr(cond, value), destination); } template void branchTest8(JITCompiler::ResultCondition cond, T value, U mask, BasicBlock* destination) { return addBranch(m_jit.branchTest8(cond, value, mask), destination); } template void branchTest8(JITCompiler::ResultCondition cond, T value, BasicBlock* destination) { return addBranch(m_jit.branchTest8(cond, value), destination); } enum FallThroughMode { AtFallThroughPoint, ForceJump }; void jump(BasicBlock* destination, FallThroughMode fallThroughMode = AtFallThroughPoint) { if (destination == nextBlock() && fallThroughMode == AtFallThroughPoint) return; addBranch(m_jit.jump(), destination); } void addBranch(const MacroAssembler::Jump& jump, BasicBlock* destination) { m_branches.append(BranchRecord(jump, destination)); } void addBranch(const MacroAssembler::JumpList& jump, BasicBlock* destination); void linkBranches(); void dump(const char* label = 0); bool betterUseStrictInt52(Node* node) { return !generationInfo(node).isInt52(); } bool betterUseStrictInt52(Edge edge) { return betterUseStrictInt52(edge.node()); } bool compare(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_JITOperation_EJJ); bool compilePeepHoleBranch(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_JITOperation_EJJ); void compilePeepHoleInt32Branch(Node*, Node* branchNode, JITCompiler::RelationalCondition); void compilePeepHoleInt52Branch(Node*, Node* branchNode, JITCompiler::RelationalCondition); void compilePeepHoleBooleanBranch(Node*, Node* branchNode, JITCompiler::RelationalCondition); void compilePeepHoleDoubleBranch(Node*, Node* branchNode, JITCompiler::DoubleCondition); void compilePeepHoleObjectEquality(Node*, Node* branchNode); void compilePeepHoleObjectStrictEquality(Edge objectChild, Edge otherChild, Node* branchNode); void compilePeepHoleObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild, Node* branchNode); void compileObjectEquality(Node*); void compileObjectStrictEquality(Edge objectChild, Edge otherChild); void compileObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild); void compileObjectOrOtherLogicalNot(Edge value); void compileLogicalNot(Node*); void compileLogicalNotStringOrOther(Node*); void compileStringEquality( Node*, GPRReg leftGPR, GPRReg rightGPR, GPRReg lengthGPR, GPRReg leftTempGPR, GPRReg rightTempGPR, GPRReg leftTemp2GPR, GPRReg rightTemp2GPR, JITCompiler::JumpList fastTrue, JITCompiler::JumpList fastSlow); void compileStringEquality(Node*); void compileStringIdentEquality(Node*); void compileStringToUntypedEquality(Node*, Edge stringEdge, Edge untypedEdge); void compileStringIdentToNotStringVarEquality(Node*, Edge stringEdge, Edge notStringVarEdge); void compileStringZeroLength(Node*); void compileMiscStrictEq(Node*); template void extractStringImplFromBinarySymbols(Edge leftSymbolEdge, Edge rightSymbolEdge, const Functor&); void compileSymbolEquality(Node*); void compilePeepHoleSymbolEquality(Node*, Node* branchNode); void emitObjectOrOtherBranch(Edge value, BasicBlock* taken, BasicBlock* notTaken); void emitStringBranch(Edge value, BasicBlock* taken, BasicBlock* notTaken); void emitStringOrOtherBranch(Edge value, BasicBlock* taken, BasicBlock* notTaken); void emitBranch(Node*); struct StringSwitchCase { StringSwitchCase() { } StringSwitchCase(StringImpl* string, BasicBlock* target) : string(string) , target(target) { } bool operator<(const StringSwitchCase& other) const { return stringLessThan(*string, *other.string); } StringImpl* string; BasicBlock* target; }; void emitSwitchIntJump(SwitchData*, GPRReg value, GPRReg scratch); void emitSwitchImm(Node*, SwitchData*); void emitSwitchCharStringJump(SwitchData*, GPRReg value, GPRReg scratch); void emitSwitchChar(Node*, SwitchData*); void emitBinarySwitchStringRecurse( SwitchData*, const Vector&, unsigned numChecked, unsigned begin, unsigned end, GPRReg buffer, GPRReg length, GPRReg temp, unsigned alreadyCheckedLength, bool checkedExactLength); void emitSwitchStringOnString(SwitchData*, GPRReg string); void emitSwitchString(Node*, SwitchData*); void emitSwitch(Node*); void compileToStringOrCallStringConstructorOnCell(Node*); void compileNewStringObject(Node*); void compileNewTypedArray(Node*); void compileInt32Compare(Node*, MacroAssembler::RelationalCondition); void compileInt52Compare(Node*, MacroAssembler::RelationalCondition); void compileBooleanCompare(Node*, MacroAssembler::RelationalCondition); void compileDoubleCompare(Node*, MacroAssembler::DoubleCondition); void compileStringCompare(Node*, MacroAssembler::RelationalCondition); void compileStringIdentCompare(Node*, MacroAssembler::RelationalCondition); bool compileStrictEq(Node*); void compileAllocatePropertyStorage(Node*); void compileReallocatePropertyStorage(Node*); void compileGetButterfly(Node*); #if USE(JSVALUE32_64) template void compileContiguousPutByVal(Node*, BaseOperandType&, PropertyOperandType&, ValueOperandType&, GPRReg valuePayloadReg, TagType valueTag); #endif void compileDoublePutByVal(Node*, SpeculateCellOperand& base, SpeculateStrictInt32Operand& property); bool putByValWillNeedExtraRegister(ArrayMode arrayMode) { return arrayMode.mayStoreToHole(); } GPRReg temporaryRegisterForPutByVal(GPRTemporary&, ArrayMode); GPRReg temporaryRegisterForPutByVal(GPRTemporary& temporary, Node* node) { return temporaryRegisterForPutByVal(temporary, node->arrayMode()); } void compileGetCharCodeAt(Node*); void compileGetByValOnString(Node*); void compileFromCharCode(Node*); void compileGetByValOnDirectArguments(Node*); void compileGetByValOnScopedArguments(Node*); void compileGetScope(Node*); void compileSkipScope(Node*); void compileGetGlobalObject(Node*); void compileGetArrayLength(Node*); void compileCheckTypeInfoFlags(Node*); void compileCheckIdent(Node*); void compileValueRep(Node*); void compileDoubleRep(Node*); void compileValueToInt32(Node*); void compileUInt32ToNumber(Node*); void compileDoubleAsInt32(Node*); template void emitUntypedBitOp(Node*); void compileBitwiseOp(Node*); void emitUntypedRightShiftBitOp(Node*); void compileShiftOp(Node*); void compileValueAdd(Node*); void compileArithAdd(Node*); void compileMakeRope(Node*); void compileArithClz32(Node*); void compileArithSub(Node*); void compileArithNegate(Node*); void compileArithMul(Node*); void compileArithDiv(Node*); void compileArithMod(Node*); void compileArithPow(Node*); void compileArithRounding(Node*); void compileArithRandom(Node*); void compileArithSqrt(Node*); void compileArithLog(Node*); void compileConstantStoragePointer(Node*); void compileGetIndexedPropertyStorage(Node*); JITCompiler::Jump jumpForTypedArrayOutOfBounds(Node*, GPRReg baseGPR, GPRReg indexGPR); void emitTypedArrayBoundsCheck(Node*, GPRReg baseGPR, GPRReg indexGPR); void compileGetTypedArrayByteOffset(Node*); void compileGetByValOnIntTypedArray(Node*, TypedArrayType); void compilePutByValForIntTypedArray(GPRReg base, GPRReg property, Node*, TypedArrayType); void compileGetByValOnFloatTypedArray(Node*, TypedArrayType); void compilePutByValForFloatTypedArray(GPRReg base, GPRReg property, Node*, TypedArrayType); template void compileNewFunctionCommon(GPRReg, Structure*, GPRReg, GPRReg, GPRReg, MacroAssembler::JumpList&, size_t, FunctionExecutable*, ptrdiff_t, ptrdiff_t, ptrdiff_t); void compileNewFunction(Node*); void compileSetFunctionName(Node*); void compileForwardVarargs(Node*); void compileCreateActivation(Node*); void compileCreateDirectArguments(Node*); void compileGetFromArguments(Node*); void compilePutToArguments(Node*); void compileCreateScopedArguments(Node*); void compileCreateClonedArguments(Node*); void compileCopyRest(Node*); void compileGetRestLength(Node*); void compileNotifyWrite(Node*); bool compileRegExpExec(Node*); void compileIsObjectOrNull(Node*); void compileIsFunction(Node*); void compileTypeOf(Node*); void compileCheckStructure(Node*, GPRReg cellGPR, GPRReg tempGPR); void compileCheckStructure(Node*); void compilePutAccessorById(Node*); void compilePutGetterSetterById(Node*); void compilePutAccessorByVal(Node*); void compileGetRegExpObjectLastIndex(Node*); void compileSetRegExpObjectLastIndex(Node*); void compileLazyJSConstant(Node*); void compileMaterializeNewObject(Node*); void compileRecordRegExpCachedResult(Node*); void compileResolveScope(Node*); void compileGetDynamicVar(Node*); void compilePutDynamicVar(Node*); void moveTrueTo(GPRReg); void moveFalseTo(GPRReg); void blessBoolean(GPRReg); // size can be an immediate or a register, and must be in bytes. If size is a register, // it must be a different register than resultGPR. Emits code that place a pointer to // the end of the allocation. The returned jump is the jump to the slow path. template MacroAssembler::Jump emitAllocateBasicStorage(SizeType size, GPRReg resultGPR) { CopiedAllocator* copiedAllocator = &m_jit.vm()->heap.storageAllocator(); // It's invalid to allocate zero bytes in CopiedSpace. #ifndef NDEBUG m_jit.move(size, resultGPR); MacroAssembler::Jump nonZeroSize = m_jit.branchTest32(MacroAssembler::NonZero, resultGPR); m_jit.abortWithReason(DFGBasicStorageAllocatorZeroSize); nonZeroSize.link(&m_jit); #endif m_jit.loadPtr(&copiedAllocator->m_currentRemaining, resultGPR); MacroAssembler::Jump slowPath = m_jit.branchSubPtr(JITCompiler::Signed, size, resultGPR); m_jit.storePtr(resultGPR, &copiedAllocator->m_currentRemaining); m_jit.negPtr(resultGPR); m_jit.addPtr(JITCompiler::AbsoluteAddress(&copiedAllocator->m_currentPayloadEnd), resultGPR); return slowPath; } // Allocator for a cell of a specific size. template // StructureType can be GPR or ImmPtr. void emitAllocateJSCell(GPRReg resultGPR, GPRReg allocatorGPR, StructureType structure, GPRReg scratchGPR, MacroAssembler::JumpList& slowPath) { if (Options::forceGCSlowPaths()) slowPath.append(m_jit.jump()); else { m_jit.loadPtr(MacroAssembler::Address(allocatorGPR, MarkedAllocator::offsetOfFreeListHead()), resultGPR); slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, resultGPR)); } // The object is half-allocated: we have what we know is a fresh object, but // it's still on the GC's free list. m_jit.loadPtr(MacroAssembler::Address(resultGPR), scratchGPR); m_jit.storePtr(scratchGPR, MacroAssembler::Address(allocatorGPR, MarkedAllocator::offsetOfFreeListHead())); // Initialize the object's Structure. m_jit.emitStoreStructureWithTypeInfo(structure, resultGPR, scratchGPR); } // Allocator for an object of a specific size. template // StructureType and StorageType can be GPR or ImmPtr. void emitAllocateJSObject(GPRReg resultGPR, GPRReg allocatorGPR, StructureType structure, StorageType storage, GPRReg scratchGPR, MacroAssembler::JumpList& slowPath) { emitAllocateJSCell(resultGPR, allocatorGPR, structure, scratchGPR, slowPath); // Initialize the object's property storage pointer. m_jit.storePtr(storage, MacroAssembler::Address(resultGPR, JSObject::butterflyOffset())); } template // StructureType and StorageType can be GPR or ImmPtr. void emitAllocateJSObjectWithKnownSize( GPRReg resultGPR, StructureType structure, StorageType storage, GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath, size_t size) { MarkedAllocator* allocator = &m_jit.vm()->heap.allocatorForObjectOfType(size); m_jit.move(TrustedImmPtr(allocator), scratchGPR1); emitAllocateJSObject(resultGPR, scratchGPR1, structure, storage, scratchGPR2, slowPath); } // Convenience allocator for a built-in object. template // StructureType and StorageType can be GPR or ImmPtr. void emitAllocateJSObject(GPRReg resultGPR, StructureType structure, StorageType storage, GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath) { emitAllocateJSObjectWithKnownSize( resultGPR, structure, storage, scratchGPR1, scratchGPR2, slowPath, ClassType::allocationSize(0)); } template // StructureType and StorageType can be GPR or ImmPtr. void emitAllocateVariableSizedJSObject(GPRReg resultGPR, StructureType structure, GPRReg allocationSize, GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath) { static_assert(!(MarkedSpace::preciseStep & (MarkedSpace::preciseStep - 1)), "MarkedSpace::preciseStep must be a power of two."); static_assert(!(MarkedSpace::impreciseStep & (MarkedSpace::impreciseStep - 1)), "MarkedSpace::impreciseStep must be a power of two."); MarkedSpace::Subspace& subspace = m_jit.vm()->heap.subspaceForObjectOfType(); m_jit.add32(TrustedImm32(MarkedSpace::preciseStep - 1), allocationSize); MacroAssembler::Jump notSmall = m_jit.branch32(MacroAssembler::AboveOrEqual, allocationSize, TrustedImm32(MarkedSpace::preciseCutoff)); m_jit.rshift32(allocationSize, TrustedImm32(getLSBSet(MarkedSpace::preciseStep)), scratchGPR1); m_jit.mul32(TrustedImm32(sizeof(MarkedAllocator)), scratchGPR1, scratchGPR1); m_jit.addPtr(MacroAssembler::TrustedImmPtr(&subspace.preciseAllocators[0]), scratchGPR1); MacroAssembler::Jump selectedSmallSpace = m_jit.jump(); notSmall.link(&m_jit); slowPath.append(m_jit.branch32(MacroAssembler::AboveOrEqual, allocationSize, TrustedImm32(MarkedSpace::impreciseCutoff))); m_jit.rshift32(allocationSize, TrustedImm32(getLSBSet(MarkedSpace::impreciseStep)), scratchGPR1); m_jit.mul32(TrustedImm32(sizeof(MarkedAllocator)), scratchGPR1, scratchGPR1); m_jit.addPtr(MacroAssembler::TrustedImmPtr(&subspace.impreciseAllocators[0]), scratchGPR1); selectedSmallSpace.link(&m_jit); emitAllocateJSObject(resultGPR, scratchGPR1, structure, TrustedImmPtr(0), scratchGPR2, slowPath); } template void emitAllocateDestructibleObject(GPRReg resultGPR, Structure* structure, GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath) { emitAllocateJSObject(resultGPR, TrustedImmPtr(structure), TrustedImmPtr(0), scratchGPR1, scratchGPR2, slowPath); m_jit.storePtr(TrustedImmPtr(structure->classInfo()), MacroAssembler::Address(resultGPR, JSDestructibleObject::classInfoOffset())); } void emitAllocateRawObject(GPRReg resultGPR, Structure*, GPRReg storageGPR, unsigned numElements, unsigned vectorLength); void emitGetLength(InlineCallFrame*, GPRReg lengthGPR, bool includeThis = false); void emitGetLength(CodeOrigin, GPRReg lengthGPR, bool includeThis = false); void emitGetCallee(CodeOrigin, GPRReg calleeGPR); void emitGetArgumentStart(CodeOrigin, GPRReg startGPR); // Generate an OSR exit fuzz check. Returns Jump() if OSR exit fuzz is not enabled, or if // it's in training mode. MacroAssembler::Jump emitOSRExitFuzzCheck(); // Add a speculation check. void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail); void speculationCheck(ExitKind, JSValueSource, Node*, const MacroAssembler::JumpList& jumpsToFail); // Add a speculation check without additional recovery, and with a promise to supply a jump later. OSRExitJumpPlaceholder speculationCheck(ExitKind, JSValueSource, Node*); OSRExitJumpPlaceholder speculationCheck(ExitKind, JSValueSource, Edge); void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail); void speculationCheck(ExitKind, JSValueSource, Edge, const MacroAssembler::JumpList& jumpsToFail); // Add a speculation check with additional recovery. void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&); void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&); void emitInvalidationPoint(Node*); void unreachable(Node*); // Called when we statically determine that a speculation will fail. void terminateSpeculativeExecution(ExitKind, JSValueRegs, Node*); void terminateSpeculativeExecution(ExitKind, JSValueRegs, Edge); // Helpers for performing type checks on an edge stored in the given registers. bool needsTypeCheck(Edge edge, SpeculatedType typesPassedThrough) { return m_interpreter.needsTypeCheck(edge, typesPassedThrough); } void typeCheck(JSValueSource, Edge, SpeculatedType typesPassedThrough, MacroAssembler::Jump jumpToFail, ExitKind = BadType); void speculateCellTypeWithoutTypeFiltering(Edge, GPRReg cellGPR, JSType); void speculateCellType(Edge, GPRReg cellGPR, SpeculatedType, JSType); void speculateInt32(Edge); #if USE(JSVALUE64) void convertAnyInt(Edge, GPRReg resultGPR); void speculateAnyInt(Edge); void speculateDoubleRepAnyInt(Edge); #endif // USE(JSVALUE64) void speculateNumber(Edge); void speculateRealNumber(Edge); void speculateDoubleRepReal(Edge); void speculateBoolean(Edge); void speculateCell(Edge); void speculateCellOrOther(Edge); void speculateObject(Edge); void speculateFunction(Edge); void speculateFinalObject(Edge); void speculateRegExpObject(Edge, GPRReg cell); void speculateRegExpObject(Edge); void speculateObjectOrOther(Edge); void speculateString(Edge edge, GPRReg cell); void speculateStringIdentAndLoadStorage(Edge edge, GPRReg string, GPRReg storage); void speculateStringIdent(Edge edge, GPRReg string); void speculateStringIdent(Edge); void speculateString(Edge); void speculateStringOrOther(Edge, JSValueRegs, GPRReg scratch); void speculateStringOrOther(Edge); void speculateNotStringVar(Edge); template void speculateStringObjectForStructure(Edge, StructureLocationType); void speculateStringObject(Edge, GPRReg); void speculateStringObject(Edge); void speculateStringOrStringObject(Edge); void speculateSymbol(Edge, GPRReg cell); void speculateSymbol(Edge); void speculateNotCell(Edge); void speculateOther(Edge); void speculateMisc(Edge, JSValueRegs); void speculateMisc(Edge); void speculate(Node*, Edge); JITCompiler::Jump jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode, IndexingType); JITCompiler::JumpList jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode); void checkArray(Node*); void arrayify(Node*, GPRReg baseReg, GPRReg propertyReg); void arrayify(Node*); template GPRReg fillSpeculateInt32Internal(Edge, DataFormat& returnFormat); // It is possible, during speculative generation, to reach a situation in which we // can statically determine a speculation will fail (for example, when two nodes // will make conflicting speculations about the same operand). In such cases this // flag is cleared, indicating no further code generation should take place. bool m_compileOkay; void recordSetLocal( VirtualRegister bytecodeReg, VirtualRegister machineReg, DataFormat format) { m_stream->appendAndLog(VariableEvent::setLocal(bytecodeReg, machineReg, format)); } void recordSetLocal(DataFormat format) { VariableAccessData* variable = m_currentNode->variableAccessData(); recordSetLocal(variable->local(), variable->machineLocal(), format); } GenerationInfo& generationInfoFromVirtualRegister(VirtualRegister virtualRegister) { return m_generationInfo[virtualRegister.toLocal()]; } GenerationInfo& generationInfo(Node* node) { return generationInfoFromVirtualRegister(node->virtualRegister()); } GenerationInfo& generationInfo(Edge edge) { return generationInfo(edge.node()); } // The JIT, while also provides MacroAssembler functionality. JITCompiler& m_jit; // The current node being generated. BasicBlock* m_block; Node* m_currentNode; NodeType m_lastGeneratedNode; unsigned m_indexInBlock; // Virtual and physical register maps. Vector m_generationInfo; RegisterBank m_gprs; RegisterBank m_fprs; Vector m_osrEntryHeads; struct BranchRecord { BranchRecord(MacroAssembler::Jump jump, BasicBlock* destination) : jump(jump) , destination(destination) { } MacroAssembler::Jump jump; BasicBlock* destination; }; Vector m_branches; NodeOrigin m_origin; InPlaceAbstractState m_state; AbstractInterpreter m_interpreter; VariableEventStream* m_stream; MinifiedGraph* m_minifiedGraph; Vector, 8> m_slowPathGenerators; Vector, CodeOrigin>, 8> m_slowPathLambdas; Vector m_plans; unsigned m_outOfLineStreamIndex { UINT_MAX }; }; // === Operand types === // // These classes are used to lock the operands to a node into machine // registers. These classes implement of pattern of locking a value // into register at the point of construction only if it is already in // registers, and otherwise loading it lazily at the point it is first // used. We do so in order to attempt to avoid spilling one operand // in order to make space available for another. class JSValueOperand { public: explicit JSValueOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) : m_jit(jit) , m_edge(edge) #if USE(JSVALUE64) , m_gprOrInvalid(InvalidGPRReg) #elif USE(JSVALUE32_64) , m_isDouble(false) #endif { ASSERT(m_jit); if (!edge) return; ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == UntypedUse); #if USE(JSVALUE64) if (jit->isFilled(node())) gpr(); #elif USE(JSVALUE32_64) m_register.pair.tagGPR = InvalidGPRReg; m_register.pair.payloadGPR = InvalidGPRReg; if (jit->isFilled(node())) fill(); #endif } explicit JSValueOperand(JSValueOperand&& other) : m_jit(other.m_jit) , m_edge(other.m_edge) { #if USE(JSVALUE64) m_gprOrInvalid = other.m_gprOrInvalid; #elif USE(JSVALUE32_64) m_register.pair.tagGPR = InvalidGPRReg; m_register.pair.payloadGPR = InvalidGPRReg; m_isDouble = other.m_isDouble; if (m_edge) { if (m_isDouble) m_register.fpr = other.m_register.fpr; else m_register.pair = other.m_register.pair; } #endif other.m_edge = Edge(); #if USE(JSVALUE64) other.m_gprOrInvalid = InvalidGPRReg; #elif USE(JSVALUE32_64) other.m_isDouble = false; #endif } ~JSValueOperand() { if (!m_edge) return; #if USE(JSVALUE64) ASSERT(m_gprOrInvalid != InvalidGPRReg); m_jit->unlock(m_gprOrInvalid); #elif USE(JSVALUE32_64) if (m_isDouble) { ASSERT(m_register.fpr != InvalidFPRReg); m_jit->unlock(m_register.fpr); } else { ASSERT(m_register.pair.tagGPR != InvalidGPRReg && m_register.pair.payloadGPR != InvalidGPRReg); m_jit->unlock(m_register.pair.tagGPR); m_jit->unlock(m_register.pair.payloadGPR); } #endif } Edge edge() const { return m_edge; } Node* node() const { return edge().node(); } #if USE(JSVALUE64) GPRReg gpr() { if (m_gprOrInvalid == InvalidGPRReg) m_gprOrInvalid = m_jit->fillJSValue(m_edge); return m_gprOrInvalid; } JSValueRegs jsValueRegs() { return JSValueRegs(gpr()); } #elif USE(JSVALUE32_64) bool isDouble() { return m_isDouble; } void fill() { if (m_register.pair.tagGPR == InvalidGPRReg && m_register.pair.payloadGPR == InvalidGPRReg) m_isDouble = !m_jit->fillJSValue(m_edge, m_register.pair.tagGPR, m_register.pair.payloadGPR, m_register.fpr); } GPRReg tagGPR() { fill(); ASSERT(!m_isDouble); return m_register.pair.tagGPR; } GPRReg payloadGPR() { fill(); ASSERT(!m_isDouble); return m_register.pair.payloadGPR; } JSValueRegs jsValueRegs() { return JSValueRegs(tagGPR(), payloadGPR()); } GPRReg gpr(WhichValueWord which) { return jsValueRegs().gpr(which); } FPRReg fpr() { fill(); ASSERT(m_isDouble); return m_register.fpr; } #endif void use() { m_jit->use(node()); } private: SpeculativeJIT* m_jit; Edge m_edge; #if USE(JSVALUE64) GPRReg m_gprOrInvalid; #elif USE(JSVALUE32_64) union { struct { GPRReg tagGPR; GPRReg payloadGPR; } pair; FPRReg fpr; } m_register; bool m_isDouble; #endif }; class StorageOperand { public: explicit StorageOperand(SpeculativeJIT* jit, Edge edge) : m_jit(jit) , m_edge(edge) , m_gprOrInvalid(InvalidGPRReg) { ASSERT(m_jit); ASSERT(edge.useKind() == UntypedUse || edge.useKind() == KnownCellUse); if (jit->isFilled(node())) gpr(); } ~StorageOperand() { ASSERT(m_gprOrInvalid != InvalidGPRReg); m_jit->unlock(m_gprOrInvalid); } Edge edge() const { return m_edge; } Node* node() const { return edge().node(); } GPRReg gpr() { if (m_gprOrInvalid == InvalidGPRReg) m_gprOrInvalid = m_jit->fillStorage(edge()); return m_gprOrInvalid; } void use() { m_jit->use(node()); } private: SpeculativeJIT* m_jit; Edge m_edge; GPRReg m_gprOrInvalid; }; // === Temporaries === // // These classes are used to allocate temporary registers. // A mechanism is provided to attempt to reuse the registers // currently allocated to child nodes whose value is consumed // by, and not live after, this operation. enum ReuseTag { Reuse }; class GPRTemporary { public: GPRTemporary(); GPRTemporary(SpeculativeJIT*); GPRTemporary(SpeculativeJIT*, GPRReg specific); template GPRTemporary(SpeculativeJIT* jit, ReuseTag, T& operand) : m_jit(jit) , m_gpr(InvalidGPRReg) { if (m_jit->canReuse(operand.node())) m_gpr = m_jit->reuse(operand.gpr()); else m_gpr = m_jit->allocate(); } template GPRTemporary(SpeculativeJIT* jit, ReuseTag, T1& op1, T2& op2) : m_jit(jit) , m_gpr(InvalidGPRReg) { if (m_jit->canReuse(op1.node())) m_gpr = m_jit->reuse(op1.gpr()); else if (m_jit->canReuse(op2.node())) m_gpr = m_jit->reuse(op2.gpr()); else if (m_jit->canReuse(op1.node(), op2.node()) && op1.gpr() == op2.gpr()) m_gpr = m_jit->reuse(op1.gpr()); else m_gpr = m_jit->allocate(); } #if USE(JSVALUE32_64) GPRTemporary(SpeculativeJIT*, ReuseTag, JSValueOperand&, WhichValueWord); #endif GPRTemporary(GPRTemporary& other) = delete; GPRTemporary& operator=(GPRTemporary&& other) { ASSERT(!m_jit); ASSERT(m_gpr == InvalidGPRReg); std::swap(m_jit, other.m_jit); std::swap(m_gpr, other.m_gpr); return *this; } void adopt(GPRTemporary&); ~GPRTemporary() { if (m_jit && m_gpr != InvalidGPRReg) m_jit->unlock(gpr()); } GPRReg gpr() { return m_gpr; } private: SpeculativeJIT* m_jit; GPRReg m_gpr; }; class JSValueRegsTemporary { public: JSValueRegsTemporary(); JSValueRegsTemporary(SpeculativeJIT*); template JSValueRegsTemporary(SpeculativeJIT*, ReuseTag, T& operand, WhichValueWord resultRegWord = PayloadWord); JSValueRegsTemporary(SpeculativeJIT*, ReuseTag, JSValueOperand&); ~JSValueRegsTemporary(); JSValueRegs regs(); private: #if USE(JSVALUE64) GPRTemporary m_gpr; #else GPRTemporary m_payloadGPR; GPRTemporary m_tagGPR; #endif }; class FPRTemporary { public: FPRTemporary(SpeculativeJIT*); FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&); FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&, SpeculateDoubleOperand&); #if USE(JSVALUE32_64) FPRTemporary(SpeculativeJIT*, JSValueOperand&); #endif ~FPRTemporary() { m_jit->unlock(fpr()); } FPRReg fpr() const { ASSERT(m_fpr != InvalidFPRReg); return m_fpr; } protected: FPRTemporary(SpeculativeJIT* jit, FPRReg lockedFPR) : m_jit(jit) , m_fpr(lockedFPR) { } private: SpeculativeJIT* m_jit; FPRReg m_fpr; }; // === Results === // // These classes lock the result of a call to a C++ helper function. class GPRFlushedCallResult : public GPRTemporary { public: GPRFlushedCallResult(SpeculativeJIT* jit) : GPRTemporary(jit, GPRInfo::returnValueGPR) { } }; #if USE(JSVALUE32_64) class GPRFlushedCallResult2 : public GPRTemporary { public: GPRFlushedCallResult2(SpeculativeJIT* jit) : GPRTemporary(jit, GPRInfo::returnValueGPR2) { } }; #endif class FPRResult : public FPRTemporary { public: FPRResult(SpeculativeJIT* jit) : FPRTemporary(jit, lockedResult(jit)) { } private: static FPRReg lockedResult(SpeculativeJIT* jit) { jit->lock(FPRInfo::returnValueFPR); return FPRInfo::returnValueFPR; } }; // === Speculative Operand types === // // SpeculateInt32Operand, SpeculateStrictInt32Operand and SpeculateCellOperand. // // These are used to lock the operands to a node into machine registers within the // SpeculativeJIT. The classes operate like those above, however these will // perform a speculative check for a more restrictive type than we can statically // determine the operand to have. If the operand does not have the requested type, // a bail-out to the non-speculative path will be taken. class SpeculateInt32Operand { public: explicit SpeculateInt32Operand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) : m_jit(jit) , m_edge(edge) , m_gprOrInvalid(InvalidGPRReg) #ifndef NDEBUG , m_format(DataFormatNone) #endif { ASSERT(m_jit); ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use)); if (jit->isFilled(node())) gpr(); } ~SpeculateInt32Operand() { ASSERT(m_gprOrInvalid != InvalidGPRReg); m_jit->unlock(m_gprOrInvalid); } Edge edge() const { return m_edge; } Node* node() const { return edge().node(); } DataFormat format() { gpr(); // m_format is set when m_gpr is locked. ASSERT(m_format == DataFormatInt32 || m_format == DataFormatJSInt32); return m_format; } GPRReg gpr() { if (m_gprOrInvalid == InvalidGPRReg) m_gprOrInvalid = m_jit->fillSpeculateInt32(edge(), m_format); return m_gprOrInvalid; } void use() { m_jit->use(node()); } private: SpeculativeJIT* m_jit; Edge m_edge; GPRReg m_gprOrInvalid; DataFormat m_format; }; class SpeculateStrictInt32Operand { public: explicit SpeculateStrictInt32Operand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) : m_jit(jit) , m_edge(edge) , m_gprOrInvalid(InvalidGPRReg) { ASSERT(m_jit); ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use)); if (jit->isFilled(node())) gpr(); } ~SpeculateStrictInt32Operand() { ASSERT(m_gprOrInvalid != InvalidGPRReg); m_jit->unlock(m_gprOrInvalid); } Edge edge() const { return m_edge; } Node* node() const { return edge().node(); } GPRReg gpr() { if (m_gprOrInvalid == InvalidGPRReg) m_gprOrInvalid = m_jit->fillSpeculateInt32Strict(edge()); return m_gprOrInvalid; } void use() { m_jit->use(node()); } private: SpeculativeJIT* m_jit; Edge m_edge; GPRReg m_gprOrInvalid; }; // Gives you a canonical Int52 (i.e. it's left-shifted by 16, low bits zero). class SpeculateInt52Operand { public: explicit SpeculateInt52Operand(SpeculativeJIT* jit, Edge edge) : m_jit(jit) , m_edge(edge) , m_gprOrInvalid(InvalidGPRReg) { RELEASE_ASSERT(edge.useKind() == Int52RepUse); if (jit->isFilled(node())) gpr(); } ~SpeculateInt52Operand() { ASSERT(m_gprOrInvalid != InvalidGPRReg); m_jit->unlock(m_gprOrInvalid); } Edge edge() const { return m_edge; } Node* node() const { return edge().node(); } GPRReg gpr() { if (m_gprOrInvalid == InvalidGPRReg) m_gprOrInvalid = m_jit->fillSpeculateInt52(edge(), DataFormatInt52); return m_gprOrInvalid; } void use() { m_jit->use(node()); } private: SpeculativeJIT* m_jit; Edge m_edge; GPRReg m_gprOrInvalid; }; // Gives you a strict Int52 (i.e. the payload is in the low 48 bits, high 16 bits are sign-extended). class SpeculateStrictInt52Operand { public: explicit SpeculateStrictInt52Operand(SpeculativeJIT* jit, Edge edge) : m_jit(jit) , m_edge(edge) , m_gprOrInvalid(InvalidGPRReg) { RELEASE_ASSERT(edge.useKind() == Int52RepUse); if (jit->isFilled(node())) gpr(); } ~SpeculateStrictInt52Operand() { ASSERT(m_gprOrInvalid != InvalidGPRReg); m_jit->unlock(m_gprOrInvalid); } Edge edge() const { return m_edge; } Node* node() const { return edge().node(); } GPRReg gpr() { if (m_gprOrInvalid == InvalidGPRReg) m_gprOrInvalid = m_jit->fillSpeculateInt52(edge(), DataFormatStrictInt52); return m_gprOrInvalid; } void use() { m_jit->use(node()); } private: SpeculativeJIT* m_jit; Edge m_edge; GPRReg m_gprOrInvalid; }; enum OppositeShiftTag { OppositeShift }; class SpeculateWhicheverInt52Operand { public: explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge) : m_jit(jit) , m_edge(edge) , m_gprOrInvalid(InvalidGPRReg) , m_strict(jit->betterUseStrictInt52(edge)) { RELEASE_ASSERT(edge.useKind() == Int52RepUse); if (jit->isFilled(node())) gpr(); } explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge, const SpeculateWhicheverInt52Operand& other) : m_jit(jit) , m_edge(edge) , m_gprOrInvalid(InvalidGPRReg) , m_strict(other.m_strict) { RELEASE_ASSERT(edge.useKind() == Int52RepUse); if (jit->isFilled(node())) gpr(); } explicit SpeculateWhicheverInt52Operand(SpeculativeJIT* jit, Edge edge, OppositeShiftTag, const SpeculateWhicheverInt52Operand& other) : m_jit(jit) , m_edge(edge) , m_gprOrInvalid(InvalidGPRReg) , m_strict(!other.m_strict) { RELEASE_ASSERT(edge.useKind() == Int52RepUse); if (jit->isFilled(node())) gpr(); } ~SpeculateWhicheverInt52Operand() { ASSERT(m_gprOrInvalid != InvalidGPRReg); m_jit->unlock(m_gprOrInvalid); } Edge edge() const { return m_edge; } Node* node() const { return edge().node(); } GPRReg gpr() { if (m_gprOrInvalid == InvalidGPRReg) { m_gprOrInvalid = m_jit->fillSpeculateInt52( edge(), m_strict ? DataFormatStrictInt52 : DataFormatInt52); } return m_gprOrInvalid; } void use() { m_jit->use(node()); } DataFormat format() const { return m_strict ? DataFormatStrictInt52 : DataFormatInt52; } private: SpeculativeJIT* m_jit; Edge m_edge; GPRReg m_gprOrInvalid; bool m_strict; }; class SpeculateDoubleOperand { public: explicit SpeculateDoubleOperand(SpeculativeJIT* jit, Edge edge) : m_jit(jit) , m_edge(edge) , m_fprOrInvalid(InvalidFPRReg) { ASSERT(m_jit); RELEASE_ASSERT(isDouble(edge.useKind())); if (jit->isFilled(node())) fpr(); } ~SpeculateDoubleOperand() { ASSERT(m_fprOrInvalid != InvalidFPRReg); m_jit->unlock(m_fprOrInvalid); } Edge edge() const { return m_edge; } Node* node() const { return edge().node(); } FPRReg fpr() { if (m_fprOrInvalid == InvalidFPRReg) m_fprOrInvalid = m_jit->fillSpeculateDouble(edge()); return m_fprOrInvalid; } void use() { m_jit->use(node()); } private: SpeculativeJIT* m_jit; Edge m_edge; FPRReg m_fprOrInvalid; }; class SpeculateCellOperand { public: explicit SpeculateCellOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) : m_jit(jit) , m_edge(edge) , m_gprOrInvalid(InvalidGPRReg) { ASSERT(m_jit); if (!edge) return; ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || isCell(edge.useKind())); if (jit->isFilled(node())) gpr(); } ~SpeculateCellOperand() { if (!m_edge) return; ASSERT(m_gprOrInvalid != InvalidGPRReg); m_jit->unlock(m_gprOrInvalid); } Edge edge() const { return m_edge; } Node* node() const { return edge().node(); } GPRReg gpr() { ASSERT(m_edge); if (m_gprOrInvalid == InvalidGPRReg) m_gprOrInvalid = m_jit->fillSpeculateCell(edge()); return m_gprOrInvalid; } void use() { ASSERT(m_edge); m_jit->use(node()); } private: SpeculativeJIT* m_jit; Edge m_edge; GPRReg m_gprOrInvalid; }; class SpeculateBooleanOperand { public: explicit SpeculateBooleanOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) : m_jit(jit) , m_edge(edge) , m_gprOrInvalid(InvalidGPRReg) { ASSERT(m_jit); ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == BooleanUse || edge.useKind() == KnownBooleanUse); if (jit->isFilled(node())) gpr(); } ~SpeculateBooleanOperand() { ASSERT(m_gprOrInvalid != InvalidGPRReg); m_jit->unlock(m_gprOrInvalid); } Edge edge() const { return m_edge; } Node* node() const { return edge().node(); } GPRReg gpr() { if (m_gprOrInvalid == InvalidGPRReg) m_gprOrInvalid = m_jit->fillSpeculateBoolean(edge()); return m_gprOrInvalid; } void use() { m_jit->use(node()); } private: SpeculativeJIT* m_jit; Edge m_edge; GPRReg m_gprOrInvalid; }; template void SpeculativeJIT::speculateStringObjectForStructure(Edge edge, StructureLocationType structureLocation) { Structure* stringObjectStructure = m_jit.globalObjectFor(m_currentNode->origin.semantic)->stringObjectStructure(); if (!m_state.forNode(edge).m_structure.isSubsetOf(StructureSet(stringObjectStructure))) { speculationCheck( NotStringObject, JSValueRegs(), 0, m_jit.branchStructure( JITCompiler::NotEqual, structureLocation, stringObjectStructure)); } } #define DFG_TYPE_CHECK_WITH_EXIT_KIND(exitKind, source, edge, typesPassedThrough, jumpToFail) do { \ JSValueSource _dtc_source = (source); \ Edge _dtc_edge = (edge); \ SpeculatedType _dtc_typesPassedThrough = typesPassedThrough; \ if (!needsTypeCheck(_dtc_edge, _dtc_typesPassedThrough)) \ break; \ typeCheck(_dtc_source, _dtc_edge, _dtc_typesPassedThrough, (jumpToFail), exitKind); \ } while (0) #define DFG_TYPE_CHECK(source, edge, typesPassedThrough, jumpToFail) \ DFG_TYPE_CHECK_WITH_EXIT_KIND(BadType, source, edge, typesPassedThrough, jumpToFail) } } // namespace JSC::DFG #endif #endif