// The original file was copied from sqlite, and was in the public domain. // Modifications Copyright 2006 Google Inc. All Rights Reserved /* * Copyright (C) 2010 Google Inc. All rights reserved. * Copyright (C) 2015 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, construct an * MD5 instance, call addBytes as needed on buffers full of bytes, * and then call checksum, which will fill a supplied 16-byte array * with the digest. */ #include "config.h" #include "MD5.h" #include "Assertions.h" #ifndef NDEBUG #include "StringExtras.h" #include "text/CString.h" #endif #include namespace WTF { #if PLATFORM(COCOA) MD5::MD5() { CC_MD5_Init(&m_context); } void MD5::addBytes(const uint8_t* input, size_t length) { CC_MD5_Update(&m_context, input, length); } void MD5::checksum(Digest& hash) { CC_MD5_Final(hash.data(), &m_context); } #else // Note: this code is harmless on little-endian machines. static void toLittleEndian(uint8_t* buf, unsigned longs) { ASSERT(longs > 0); do { uint32_t t = static_cast(buf[3] << 8 | buf[2]) << 16 | buf[1] << 8 | buf[0]; ASSERT_WITH_MESSAGE(!(reinterpret_cast(buf) % sizeof(t)), "alignment error of buf"); memcpy(buf, &t, sizeof(t)); buf += sizeof(t); } while (--longs); } // The four core functions. // F1 is originally defined as (x & y | ~x & z), but optimized somewhat: 4 bit ops -> 3 bit ops. #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) // This is the central step in the MD5 algorithm. #define MD5STEP(f, w, x, y, z, data, s) \ (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) static void MD5Transform(uint32_t buf[4], const uint32_t in[16]) { uint32_t a = buf[0]; uint32_t b = buf[1]; uint32_t c = buf[2]; uint32_t d = buf[3]; MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } MD5::MD5() { m_buf[0] = 0x67452301; m_buf[1] = 0xefcdab89; m_buf[2] = 0x98badcfe; m_buf[3] = 0x10325476; m_bits[0] = 0; m_bits[1] = 0; memset(m_in, 0, sizeof(m_in)); ASSERT_WITH_MESSAGE(!(reinterpret_cast(m_in) % sizeof(uint32_t)), "alignment error of m_in"); } void MD5::addBytes(const uint8_t* input, size_t length) { const uint8_t* buf = input; // Update bitcount uint32_t t = m_bits[0]; m_bits[0] = t + (length << 3); if (m_bits[0] < t) m_bits[1]++; // Carry from low to high m_bits[1] += length >> 29; t = (t >> 3) & 0x3f; // Bytes already in shsInfo->data // Handle any leading odd-sized chunks if (t) { uint8_t* p = m_in + t; t = 64 - t; if (length < t) { memcpy(p, buf, length); return; } memcpy(p, buf, t); toLittleEndian(m_in, 16); MD5Transform(m_buf, reinterpret_cast_ptr(m_in)); // m_in is 4-byte aligned. buf += t; length -= t; } // Process data in 64-byte chunks while (length >= 64) { memcpy(m_in, buf, 64); toLittleEndian(m_in, 16); MD5Transform(m_buf, reinterpret_cast_ptr(m_in)); // m_in is 4-byte aligned. buf += 64; length -= 64; } // Handle any remaining bytes of data. memcpy(m_in, buf, length); } void MD5::checksum(Digest& digest) { // Compute number of bytes mod 64 unsigned count = (m_bits[0] >> 3) & 0x3F; // Set the first char of padding to 0x80. This is safe since there is // always at least one byte free uint8_t* p = m_in + count; *p++ = 0x80; // Bytes of padding needed to make 64 bytes count = 64 - 1 - count; // Pad out to 56 mod 64 if (count < 8) { // Two lots of padding: Pad the first block to 64 bytes memset(p, 0, count); toLittleEndian(m_in, 16); MD5Transform(m_buf, reinterpret_cast_ptr(m_in)); // m_in is 4-byte aligned. // Now fill the next block with 56 bytes memset(m_in, 0, 56); } else { // Pad block to 56 bytes memset(p, 0, count - 8); } toLittleEndian(m_in, 14); // Append length in bits and transform memcpy(m_in + 56, m_bits, sizeof(m_bits)); MD5Transform(m_buf, reinterpret_cast_ptr(m_in)); toLittleEndian(reinterpret_cast(m_buf), 4); // Now, m_buf contains checksum result. uint8_t* mBufUInt8 = reinterpret_cast(m_buf); for (size_t i = 0; i < hashSize; ++i) digest[i] = mBufUInt8[i]; // In case it's sensitive memset(m_buf, 0, sizeof(m_buf)); memset(m_bits, 0, sizeof(m_bits)); memset(m_in, 0, sizeof(m_in)); } #endif } // namespace WTF