/* * Copyright (C) 2006, 2007, 2008, 2009, 2010, 2013, 2016 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef WTF_MathExtras_h #define WTF_MathExtras_h #include #include #include #include #include #include #include #if OS(SOLARIS) #include #endif #if OS(OPENBSD) #include #include #endif #ifndef M_PI const double piDouble = 3.14159265358979323846; const float piFloat = 3.14159265358979323846f; #else const double piDouble = M_PI; const float piFloat = static_cast(M_PI); #endif #ifndef M_PI_2 const double piOverTwoDouble = 1.57079632679489661923; const float piOverTwoFloat = 1.57079632679489661923f; #else const double piOverTwoDouble = M_PI_2; const float piOverTwoFloat = static_cast(M_PI_2); #endif #ifndef M_PI_4 const double piOverFourDouble = 0.785398163397448309616; const float piOverFourFloat = 0.785398163397448309616f; #else const double piOverFourDouble = M_PI_4; const float piOverFourFloat = static_cast(M_PI_4); #endif #ifndef M_SQRT2 const double sqrtOfTwoDouble = 1.41421356237309504880; const float sqrtOfTwoFloat = 1.41421356237309504880f; #else const double sqrtOfTwoDouble = M_SQRT2; const float sqrtOfTwoFloat = static_cast(M_SQRT2); #endif #if OS(SOLARIS) namespace std { #ifndef isfinite inline bool isfinite(double x) { return finite(x) && !isnand(x); } #endif #ifndef signbit inline bool signbit(double x) { return copysign(1.0, x) < 0; } #endif #ifndef isinf inline bool isinf(double x) { return !finite(x) && !isnand(x); } #endif } // namespace std #endif #if COMPILER(MSVC) // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values. extern "C" inline double wtf_atan2(double x, double y) { double posInf = std::numeric_limits::infinity(); double negInf = -std::numeric_limits::infinity(); double nan = std::numeric_limits::quiet_NaN(); double result = nan; if (x == posInf && y == posInf) result = piOverFourDouble; else if (x == posInf && y == negInf) result = 3 * piOverFourDouble; else if (x == negInf && y == posInf) result = -piOverFourDouble; else if (x == negInf && y == negInf) result = -3 * piOverFourDouble; else result = ::atan2(x, y); return result; } #define atan2(x, y) wtf_atan2(x, y) #endif // COMPILER(MSVC) inline double deg2rad(double d) { return d * piDouble / 180.0; } inline double rad2deg(double r) { return r * 180.0 / piDouble; } inline double deg2grad(double d) { return d * 400.0 / 360.0; } inline double grad2deg(double g) { return g * 360.0 / 400.0; } inline double turn2deg(double t) { return t * 360.0; } inline double deg2turn(double d) { return d / 360.0; } inline double rad2grad(double r) { return r * 200.0 / piDouble; } inline double grad2rad(double g) { return g * piDouble / 200.0; } inline float deg2rad(float d) { return d * piFloat / 180.0f; } inline float rad2deg(float r) { return r * 180.0f / piFloat; } inline float deg2grad(float d) { return d * 400.0f / 360.0f; } inline float grad2deg(float g) { return g * 360.0f / 400.0f; } inline float turn2deg(float t) { return t * 360.0f; } inline float deg2turn(float d) { return d / 360.0f; } inline float rad2grad(float r) { return r * 200.0f / piFloat; } inline float grad2rad(float g) { return g * piFloat / 200.0f; } // std::numeric_limits::min() returns the smallest positive value for floating point types template inline T defaultMinimumForClamp() { return std::numeric_limits::min(); } template<> inline float defaultMinimumForClamp() { return -std::numeric_limits::max(); } template<> inline double defaultMinimumForClamp() { return -std::numeric_limits::max(); } template inline T defaultMaximumForClamp() { return std::numeric_limits::max(); } template inline T clampTo(double value, T min = defaultMinimumForClamp(), T max = defaultMaximumForClamp()) { if (value >= static_cast(max)) return max; if (value <= static_cast(min)) return min; return static_cast(value); } template<> inline long long int clampTo(double, long long int, long long int); // clampTo does not support long long ints. inline int clampToInteger(double value) { return clampTo(value); } inline unsigned clampToUnsigned(double value) { return clampTo(value); } inline float clampToFloat(double value) { return clampTo(value); } inline int clampToPositiveInteger(double value) { return clampTo(value, 0); } inline int clampToInteger(float value) { return clampTo(value); } template inline int clampToInteger(T x) { static_assert(std::numeric_limits::is_integer, "T must be an integer."); const T intMax = static_cast(std::numeric_limits::max()); if (x >= intMax) return std::numeric_limits::max(); return static_cast(x); } inline bool isWithinIntRange(float x) { return x > static_cast(std::numeric_limits::min()) && x < static_cast(std::numeric_limits::max()); } template inline bool hasOneBitSet(T value) { return !((value - 1) & value) && value; } template inline bool hasZeroOrOneBitsSet(T value) { return !((value - 1) & value); } template inline bool hasTwoOrMoreBitsSet(T value) { return !hasZeroOrOneBitsSet(value); } template inline unsigned getLSBSet(T value) { unsigned result = 0; while (value >>= 1) ++result; return result; } template inline T divideRoundedUp(T a, T b) { return (a + b - 1) / b; } template inline T timesThreePlusOneDividedByTwo(T value) { // Mathematically equivalent to: // (value * 3 + 1) / 2; // or: // (unsigned)ceil(value * 1.5)); // This form is not prone to internal overflow. return value + (value >> 1) + (value & 1); } template inline bool isNotZeroAndOrdered(T value) { return value > 0.0 || value < 0.0; } template inline bool isZeroOrUnordered(T value) { return !isNotZeroAndOrdered(value); } template inline bool isGreaterThanNonZeroPowerOfTwo(T value, unsigned power) { // The crazy way of testing of index >= 2 ** power // (where I use ** to denote pow()). return !!((value >> 1) >> (power - 1)); } #ifndef UINT64_C #if COMPILER(MSVC) #define UINT64_C(c) c ## ui64 #else #define UINT64_C(c) c ## ull #endif #endif #if COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1) inline double wtf_pow(double x, double y) { // MinGW-w64 has a custom implementation for pow. // This handles certain special cases that are different. if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) { double f; if (modf(y, &f) != 0.0) return ((x == 0.0) ^ (y > 0.0)) ? std::numeric_limits::infinity() : 0.0; } if (x == 2.0) { int yInt = static_cast(y); if (y == yInt) return ldexp(1.0, yInt); } return pow(x, y); } #define pow(x, y) wtf_pow(x, y) #endif // COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1) // decompose 'number' to its sign, exponent, and mantissa components. // The result is interpreted as: // (sign ? -1 : 1) * pow(2, exponent) * (mantissa / (1 << 52)) inline void decomposeDouble(double number, bool& sign, int32_t& exponent, uint64_t& mantissa) { ASSERT(std::isfinite(number)); sign = std::signbit(number); uint64_t bits = WTF::bitwise_cast(number); exponent = (static_cast(bits >> 52) & 0x7ff) - 0x3ff; mantissa = bits & 0xFFFFFFFFFFFFFull; // Check for zero/denormal values; if so, adjust the exponent, // if not insert the implicit, omitted leading 1 bit. if (exponent == -0x3ff) exponent = mantissa ? -0x3fe : 0; else mantissa |= 0x10000000000000ull; } // Calculate d % 2^{64}. inline void doubleToInteger(double d, unsigned long long& value) { if (std::isnan(d) || std::isinf(d)) value = 0; else { // -2^{64} < fmodValue < 2^{64}. double fmodValue = fmod(trunc(d), std::numeric_limits::max() + 1.0); if (fmodValue >= 0) { // 0 <= fmodValue < 2^{64}. // 0 <= value < 2^{64}. This cast causes no loss. value = static_cast(fmodValue); } else { // -2^{64} < fmodValue < 0. // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss. unsigned long long fmodValueInUnsignedLongLong = static_cast(-fmodValue); // -1 < (std::numeric_limits::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1. // 0 < value < 2^{64}. value = std::numeric_limits::max() - fmodValueInUnsignedLongLong + 1; } } } namespace WTF { // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 inline uint32_t roundUpToPowerOfTwo(uint32_t v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; } inline unsigned fastLog2(unsigned i) { unsigned log2 = 0; if (i & (i - 1)) log2 += 1; if (i >> 16) log2 += 16, i >>= 16; if (i >> 8) log2 += 8, i >>= 8; if (i >> 4) log2 += 4, i >>= 4; if (i >> 2) log2 += 2, i >>= 2; if (i >> 1) log2 += 1; return log2; } inline unsigned fastLog2(uint64_t value) { unsigned high = static_cast(value >> 32); if (high) return fastLog2(high) + 32; return fastLog2(static_cast(value)); } template inline typename std::enable_if::value, T>::type safeFPDivision(T u, T v) { // Protect against overflow / underflow. if (v < 1 && u > v * std::numeric_limits::max()) return std::numeric_limits::max(); if (v > 1 && u < v * std::numeric_limits::min()) return 0; return u / v; } // Floating point numbers comparison: // u is "essentially equal" [1][2] to v if: | u - v | / |u| <= e and | u - v | / |v| <= e // // [1] Knuth, D. E. "Accuracy of Floating Point Arithmetic." The Art of Computer Programming. 3rd ed. Vol. 2. // Boston: Addison-Wesley, 1998. 229-45. // [2] http://www.boost.org/doc/libs/1_34_0/libs/test/doc/components/test_tools/floating_point_comparison.html template inline typename std::enable_if::value, bool>::type areEssentiallyEqual(T u, T v, T epsilon = std::numeric_limits::epsilon()) { if (u == v) return true; const T delta = std::abs(u - v); return safeFPDivision(delta, std::abs(u)) <= epsilon && safeFPDivision(delta, std::abs(v)) <= epsilon; } inline bool isIntegral(float value) { return static_cast(value) == value; } template inline void incrementWithSaturation(T& value) { if (value != std::numeric_limits::max()) value++; } template inline T leftShiftWithSaturation(T value, unsigned shiftAmount, T max = std::numeric_limits::max()) { T result = value << shiftAmount; // We will have saturated if shifting right doesn't recover the original value. if (result >> shiftAmount != value) return max; if (result > max) return max; return result; } // Check if two ranges overlap assuming that neither range is empty. template inline bool nonEmptyRangesOverlap(T leftMin, T leftMax, T rightMin, T rightMax) { ASSERT(leftMin < leftMax); ASSERT(rightMin < rightMax); if (leftMin <= rightMin && leftMax > rightMin) return true; if (rightMin <= leftMin && rightMax > leftMin) return true; return false; } // Pass ranges with the min being inclusive and the max being exclusive. For example, this should // return false: // // rangesOverlap(0, 8, 8, 16) template inline bool rangesOverlap(T leftMin, T leftMax, T rightMin, T rightMax) { ASSERT(leftMin <= leftMax); ASSERT(rightMin <= rightMax); // Empty ranges interfere with nothing. if (leftMin == leftMax) return false; if (rightMin == rightMax) return false; return nonEmptyRangesOverlap(leftMin, leftMax, rightMin, rightMax); } } // namespace WTF #endif // #ifndef WTF_MathExtras_h