/* * Copyright (C) 2008 Apple Inc. All rights reserved. * Copyright (C) 2009 Jian Li * Copyright (C) 2012 Patrick Gansterer * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Thread local storage is implemented by using either pthread API or Windows * native API. There is subtle semantic discrepancy for the cleanup function * implementation as noted below: * @ In pthread implementation, the destructor function will be called * repeatedly if there is still non-NULL value associated with the function. * @ In Windows native implementation, the destructor function will be called * only once. * This semantic discrepancy does not impose any problem because nowhere in * WebKit the repeated call bahavior is utilized. */ #ifndef WTF_ThreadSpecific_h #define WTF_ThreadSpecific_h #include #include #if USE(PTHREADS) #include #elif OS(WINDOWS) #include #endif namespace WTF { #if OS(WINDOWS) && CPU(X86) #define THREAD_SPECIFIC_CALL __stdcall #else #define THREAD_SPECIFIC_CALL #endif template class ThreadSpecific { WTF_MAKE_NONCOPYABLE(ThreadSpecific); public: ThreadSpecific(); bool isSet(); // Useful as a fast check to see if this thread has set this value. T* operator->(); operator T*(); T& operator*(); #if USE(WEB_THREAD) void replace(T*); #endif private: // Not implemented. It's technically possible to destroy a thread specific key, but one would need // to make sure that all values have been destroyed already (usually, that all threads that used it // have exited). It's unlikely that any user of this call will be in that situation - and having // a destructor defined can be confusing, given that it has such strong pre-requisites to work correctly. ~ThreadSpecific(); T* get(); void set(T*); void static THREAD_SPECIFIC_CALL destroy(void* ptr); struct Data { WTF_MAKE_NONCOPYABLE(Data); public: Data(T* value, ThreadSpecific* owner) : value(value), owner(owner) {} T* value; ThreadSpecific* owner; }; #if USE(PTHREADS) pthread_key_t m_key; #elif OS(WINDOWS) int m_index; #endif }; #if USE(PTHREADS) typedef pthread_key_t ThreadSpecificKey; inline void threadSpecificKeyCreate(ThreadSpecificKey* key, void (*destructor)(void *)) { int error = pthread_key_create(key, destructor); if (error) CRASH(); } inline void threadSpecificKeyDelete(ThreadSpecificKey key) { int error = pthread_key_delete(key); if (error) CRASH(); } inline void threadSpecificSet(ThreadSpecificKey key, void* value) { pthread_setspecific(key, value); } inline void* threadSpecificGet(ThreadSpecificKey key) { return pthread_getspecific(key); } template inline ThreadSpecific::ThreadSpecific() { int error = pthread_key_create(&m_key, destroy); if (error) CRASH(); } template inline T* ThreadSpecific::get() { Data* data = static_cast(pthread_getspecific(m_key)); return data ? data->value : 0; } template inline void ThreadSpecific::set(T* ptr) { ASSERT(!get()); pthread_setspecific(m_key, new Data(ptr, this)); } #elif OS(WINDOWS) // The maximum number of FLS keys that can be created. For simplification, we assume that: // 1) Once the instance of ThreadSpecific<> is created, it will not be destructed until the program dies. // 2) We do not need to hold many instances of ThreadSpecific<> data. This fixed number should be far enough. const int kMaxFlsKeySize = 128; WTF_EXPORT_PRIVATE long& flsKeyCount(); WTF_EXPORT_PRIVATE DWORD* flsKeys(); typedef DWORD ThreadSpecificKey; inline void threadSpecificKeyCreate(ThreadSpecificKey* key, void (THREAD_SPECIFIC_CALL *destructor)(void *)) { DWORD flsKey = FlsAlloc(destructor); if (flsKey == FLS_OUT_OF_INDEXES) CRASH(); *key = flsKey; } inline void threadSpecificKeyDelete(ThreadSpecificKey key) { FlsFree(key); } inline void threadSpecificSet(ThreadSpecificKey key, void* data) { FlsSetValue(key, data); } inline void* threadSpecificGet(ThreadSpecificKey key) { return FlsGetValue(key); } template inline ThreadSpecific::ThreadSpecific() : m_index(-1) { DWORD flsKey = FlsAlloc(destroy); if (flsKey == FLS_OUT_OF_INDEXES) CRASH(); m_index = InterlockedIncrement(&flsKeyCount()) - 1; if (m_index >= kMaxFlsKeySize) CRASH(); flsKeys()[m_index] = flsKey; } template inline ThreadSpecific::~ThreadSpecific() { FlsFree(flsKeys()[m_index]); } template inline T* ThreadSpecific::get() { Data* data = static_cast(FlsGetValue(flsKeys()[m_index])); return data ? data->value : 0; } template inline void ThreadSpecific::set(T* ptr) { ASSERT(!get()); Data* data = new Data(ptr, this); FlsSetValue(flsKeys()[m_index], data); } #else #error ThreadSpecific is not implemented for this platform. #endif template inline void THREAD_SPECIFIC_CALL ThreadSpecific::destroy(void* ptr) { Data* data = static_cast(ptr); #if USE(PTHREADS) // We want get() to keep working while data destructor works, because it can be called indirectly by the destructor. // Some pthreads implementations zero out the pointer before calling destroy(), so we temporarily reset it. pthread_setspecific(data->owner->m_key, ptr); #endif data->value->~T(); fastFree(data->value); #if USE(PTHREADS) pthread_setspecific(data->owner->m_key, 0); #elif OS(WINDOWS) FlsSetValue(flsKeys()[data->owner->m_index], 0); #else #error ThreadSpecific is not implemented for this platform. #endif delete data; } template inline bool ThreadSpecific::isSet() { return !!get(); } template inline ThreadSpecific::operator T*() { T* ptr = static_cast(get()); if (!ptr) { // Set up thread-specific value's memory pointer before invoking constructor, in case any function it calls // needs to access the value, to avoid recursion. ptr = static_cast(fastZeroedMalloc(sizeof(T))); set(ptr); new (NotNull, ptr) T; } return ptr; } template inline T* ThreadSpecific::operator->() { return operator T*(); } template inline T& ThreadSpecific::operator*() { return *operator T*(); } #if USE(WEB_THREAD) template inline void ThreadSpecific::replace(T* newPtr) { ASSERT(newPtr); Data* data = static_cast(pthread_getspecific(m_key)); ASSERT(data); data->value->~T(); fastFree(data->value); data->value = newPtr; } #endif } // namespace WTF #endif // WTF_ThreadSpecific_h