/* * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * (C) 2001 Dirk Mueller ( mueller@kde.org ) * Copyright (C) 2003-2009, 2013-2016 Apple Inc. All rights reserved. * Copyright (C) 2006 Andrew Wellington (proton@wiretapped.net) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include "config.h" #include "StringImpl.h" #include "AtomicString.h" #include "StringBuffer.h" #include "StringHash.h" #include #include #include #include #include #include #include #include #include #if STRING_STATS #include #include #endif namespace WTF { using namespace Unicode; static_assert(sizeof(StringImpl) == 2 * sizeof(int) + 2 * sizeof(void*), "StringImpl should stay small"); #if STRING_STATS StringStats StringImpl::m_stringStats; std::atomic StringStats::s_stringRemovesTillPrintStats(s_printStringStatsFrequency); void StringStats::removeString(StringImpl& string) { unsigned length = string.length(); bool isSubString = string.isSubString(); --m_totalNumberStrings; if (string.is8Bit()) { --m_number8BitStrings; if (!isSubString) m_total8BitData -= length; } else { --m_number16BitStrings; if (!isSubString) m_total16BitData -= length; } if (!--s_stringRemovesTillPrintStats) { s_stringRemovesTillPrintStats = s_printStringStatsFrequency; printStats(); } } void StringStats::printStats() { dataLogF("String stats for process id %d:\n", getCurrentProcessID()); unsigned long long totalNumberCharacters = m_total8BitData + m_total16BitData; double percent8Bit = m_totalNumberStrings ? ((double)m_number8BitStrings * 100) / (double)m_totalNumberStrings : 0.0; double average8bitLength = m_number8BitStrings ? (double)m_total8BitData / (double)m_number8BitStrings : 0.0; dataLogF("%8u (%5.2f%%) 8 bit %12llu chars %12llu bytes avg length %6.1f\n", m_number8BitStrings.load(), percent8Bit, m_total8BitData.load(), m_total8BitData.load(), average8bitLength); double percent16Bit = m_totalNumberStrings ? ((double)m_number16BitStrings * 100) / (double)m_totalNumberStrings : 0.0; double average16bitLength = m_number16BitStrings ? (double)m_total16BitData / (double)m_number16BitStrings : 0.0; dataLogF("%8u (%5.2f%%) 16 bit %12llu chars %12llu bytes avg length %6.1f\n", m_number16BitStrings.load(), percent16Bit, m_total16BitData.load(), m_total16BitData * 2, average16bitLength); double averageLength = m_totalNumberStrings ? (double)totalNumberCharacters / (double)m_totalNumberStrings : 0.0; unsigned long long totalDataBytes = m_total8BitData + m_total16BitData * 2; dataLogF("%8u Total %12llu chars %12llu bytes avg length %6.1f\n", m_totalNumberStrings.load(), totalNumberCharacters, totalDataBytes, averageLength); unsigned long long totalSavedBytes = m_total8BitData; double percentSavings = totalSavedBytes ? ((double)totalSavedBytes * 100) / (double)(totalDataBytes + totalSavedBytes) : 0.0; dataLogF(" Total savings %12llu bytes (%5.2f%%)\n", totalSavedBytes, percentSavings); dataLogF("%8u StringImpl::ref calls\n", m_refCalls.load()); dataLogF("%8u StringImpl::deref calls\n", m_derefCalls.load()); } #endif StringImpl::~StringImpl() { ASSERT(!isStatic()); StringView::invalidate(*this); STRING_STATS_REMOVE_STRING(*this); if (isAtomic() && length() && !isSymbol()) AtomicStringImpl::remove(static_cast(this)); if (isSymbol() && symbolRegistry()) symbolRegistry()->remove(static_cast(*this)); BufferOwnership ownership = bufferOwnership(); if (ownership == BufferInternal) return; if (ownership == BufferOwned) { // We use m_data8, but since it is a union with m_data16 this works either way. ASSERT(m_data8); fastFree(const_cast(m_data8)); return; } ASSERT(ownership == BufferSubstring); ASSERT(substringBuffer()); substringBuffer()->deref(); } void StringImpl::destroy(StringImpl* stringImpl) { stringImpl->~StringImpl(); fastFree(stringImpl); } Ref StringImpl::createFromLiteral(const char* characters, unsigned length) { ASSERT_WITH_MESSAGE(length, "Use StringImpl::empty() to create an empty string"); ASSERT(charactersAreAllASCII(reinterpret_cast(characters), length)); return adoptRef(*new StringImpl(reinterpret_cast(characters), length, ConstructWithoutCopying)); } Ref StringImpl::createFromLiteral(const char* characters) { return createFromLiteral(characters, strlen(characters)); } Ref StringImpl::createWithoutCopying(const UChar* characters, unsigned length) { if (!length) return *empty(); return adoptRef(*new StringImpl(characters, length, ConstructWithoutCopying)); } Ref StringImpl::createWithoutCopying(const LChar* characters, unsigned length) { if (!length) return *empty(); return adoptRef(*new StringImpl(characters, length, ConstructWithoutCopying)); } template inline Ref StringImpl::createUninitializedInternal(unsigned length, CharType*& data) { if (!length) { data = 0; return *empty(); } return createUninitializedInternalNonEmpty(length, data); } template inline Ref StringImpl::createUninitializedInternalNonEmpty(unsigned length, CharType*& data) { ASSERT(length); // Allocate a single buffer large enough to contain the StringImpl // struct as well as the data which it contains. This removes one // heap allocation from this call. if (length > ((std::numeric_limits::max() - sizeof(StringImpl)) / sizeof(CharType))) CRASH(); StringImpl* string = static_cast(fastMalloc(allocationSize(length))); data = string->tailPointer(); return constructInternal(string, length); } Ref StringImpl::createUninitialized(unsigned length, LChar*& data) { return createUninitializedInternal(length, data); } Ref StringImpl::createUninitialized(unsigned length, UChar*& data) { return createUninitializedInternal(length, data); } template inline Ref StringImpl::reallocateInternal(Ref&& originalString, unsigned length, CharType*& data) { ASSERT(originalString->hasOneRef()); ASSERT(originalString->bufferOwnership() == BufferInternal); if (!length) { data = 0; return *empty(); } // Same as createUninitialized() except here we use fastRealloc. if (length > ((std::numeric_limits::max() - sizeof(StringImpl)) / sizeof(CharType))) CRASH(); originalString->~StringImpl(); auto* string = static_cast(fastRealloc(&originalString.leakRef(), allocationSize(length))); data = string->tailPointer(); return constructInternal(string, length); } Ref StringImpl::reallocate(Ref&& originalString, unsigned length, LChar*& data) { ASSERT(originalString->is8Bit()); return reallocateInternal(WTFMove(originalString), length, data); } Ref StringImpl::reallocate(Ref&& originalString, unsigned length, UChar*& data) { ASSERT(!originalString->is8Bit()); return reallocateInternal(WTFMove(originalString), length, data); } template inline Ref StringImpl::createInternal(const CharType* characters, unsigned length) { if (!characters || !length) return *empty(); CharType* data; auto string = createUninitializedInternalNonEmpty(length, data); memcpy(data, characters, length * sizeof(CharType)); return string; } Ref StringImpl::create(const UChar* characters, unsigned length) { return createInternal(characters, length); } Ref StringImpl::create(const LChar* characters, unsigned length) { return createInternal(characters, length); } Ref StringImpl::create8BitIfPossible(const UChar* characters, unsigned length) { if (!characters || !length) return *empty(); LChar* data; auto string = createUninitializedInternalNonEmpty(length, data); for (size_t i = 0; i < length; ++i) { if (characters[i] & 0xff00) return create(characters, length); data[i] = static_cast(characters[i]); } return string; } Ref StringImpl::create8BitIfPossible(const UChar* string) { return StringImpl::create8BitIfPossible(string, lengthOfNullTerminatedString(string)); } Ref StringImpl::create(const LChar* string) { if (!string) return *empty(); size_t length = strlen(reinterpret_cast(string)); if (length > std::numeric_limits::max()) CRASH(); return create(string, length); } Ref StringImpl::createSymbol(StringImpl& rep) { auto* ownerRep = (rep.bufferOwnership() == BufferSubstring) ? rep.substringBuffer() : &rep; // We allocate a buffer that contains // 1. the StringImpl struct // 2. the pointer to the owner string // 3. the pointer to the symbol registry // 4. the placeholder for symbol aware hash value (allocated size is pointer size, but only 4 bytes are used) auto* stringImpl = static_cast(fastMalloc(allocationSize(3))); if (rep.is8Bit()) return adoptRef(static_cast(*new (NotNull, stringImpl) StringImpl(CreateSymbol, rep.m_data8, rep.length(), *ownerRep))); return adoptRef(static_cast(*new (NotNull, stringImpl) StringImpl(CreateSymbol, rep.m_data16, rep.length(), *ownerRep))); } Ref StringImpl::createNullSymbol() { return createSymbol(*null()); } bool StringImpl::containsOnlyWhitespace() { // FIXME: The definition of whitespace here includes a number of characters // that are not whitespace from the point of view of RenderText; I wonder if // that's a problem in practice. if (is8Bit()) { for (unsigned i = 0; i < m_length; ++i) { UChar c = m_data8[i]; if (!isASCIISpace(c)) return false; } return true; } for (unsigned i = 0; i < m_length; ++i) { UChar c = m_data16[i]; if (!isASCIISpace(c)) return false; } return true; } Ref StringImpl::substring(unsigned start, unsigned length) { if (start >= m_length) return *empty(); unsigned maxLength = m_length - start; if (length >= maxLength) { if (!start) return *this; length = maxLength; } if (is8Bit()) return create(m_data8 + start, length); return create(m_data16 + start, length); } UChar32 StringImpl::characterStartingAt(unsigned i) { if (is8Bit()) return m_data8[i]; if (U16_IS_SINGLE(m_data16[i])) return m_data16[i]; if (i + 1 < m_length && U16_IS_LEAD(m_data16[i]) && U16_IS_TRAIL(m_data16[i + 1])) return U16_GET_SUPPLEMENTARY(m_data16[i], m_data16[i + 1]); return 0; } Ref StringImpl::convertToLowercaseWithoutLocale() { // Note: At one time this was a hot function in the Dromaeo benchmark, specifically the // no-op code path up through the first 'return' statement. // First scan the string for uppercase and non-ASCII characters: if (is8Bit()) { unsigned failingIndex; for (unsigned i = 0; i < m_length; ++i) { LChar character = m_data8[i]; if (UNLIKELY((character & ~0x7F) || isASCIIUpper(character))) { failingIndex = i; goto SlowPath; } } return *this; SlowPath: LChar* data8; auto newImpl = createUninitializedInternalNonEmpty(m_length, data8); for (unsigned i = 0; i < failingIndex; ++i) data8[i] = m_data8[i]; for (unsigned i = failingIndex; i < m_length; ++i) { LChar character = m_data8[i]; if (!(character & ~0x7F)) data8[i] = toASCIILower(character); else { ASSERT(u_tolower(character) <= 0xFF); data8[i] = static_cast(u_tolower(character)); } } return newImpl; } bool noUpper = true; unsigned ored = 0; for (unsigned i = 0; i < m_length; ++i) { UChar character = m_data16[i]; if (UNLIKELY(isASCIIUpper(character))) noUpper = false; ored |= character; } // Nothing to do if the string is all ASCII with no uppercase. if (noUpper && !(ored & ~0x7F)) return *this; if (!(ored & ~0x7F)) { UChar* data16; auto newImpl = createUninitializedInternalNonEmpty(m_length, data16); for (unsigned i = 0; i < m_length; ++i) { UChar c = m_data16[i]; data16[i] = toASCIILower(c); } return newImpl; } if (m_length > static_cast(std::numeric_limits::max())) CRASH(); int32_t length = m_length; // Do a slower implementation for cases that include non-ASCII characters. UChar* data16; auto newImpl = createUninitializedInternalNonEmpty(m_length, data16); UErrorCode status = U_ZERO_ERROR; int32_t realLength = u_strToLower(data16, length, m_data16, m_length, "", &status); if (U_SUCCESS(status) && realLength == length) return newImpl; newImpl = createUninitialized(realLength, data16); status = U_ZERO_ERROR; u_strToLower(data16, realLength, m_data16, m_length, "", &status); if (U_FAILURE(status)) return *this; return newImpl; } Ref StringImpl::convertToUppercaseWithoutLocale() { // This function could be optimized for no-op cases the way // convertToLowercaseWithoutLocale() is, but in empirical testing, // few actual calls to upper() are no-ops, so it wouldn't be worth // the extra time for pre-scanning. if (m_length > static_cast(std::numeric_limits::max())) CRASH(); int32_t length = m_length; if (is8Bit()) { LChar* data8; auto newImpl = createUninitialized(m_length, data8); // Do a faster loop for the case where all the characters are ASCII. unsigned ored = 0; for (int i = 0; i < length; ++i) { LChar c = m_data8[i]; ored |= c; #if CPU(X86) && defined(_MSC_VER) && _MSC_VER >=1700 // Workaround for an MSVC 2012 x86 optimizer bug. Remove once the bug is fixed. // See https://connect.microsoft.com/VisualStudio/feedback/details/780362/optimization-bug-of-range-comparison // for more details. data8[i] = c >= 'a' && c <= 'z' ? c & ~0x20 : c; #else data8[i] = toASCIIUpper(c); #endif } if (!(ored & ~0x7F)) return newImpl; // Do a slower implementation for cases that include non-ASCII Latin-1 characters. int numberSharpSCharacters = 0; // There are two special cases. // 1. Some Latin-1 characters when converted to upper case are 16 bit characters. // 2. Lower case sharp-S converts to "SS" (two characters) for (int32_t i = 0; i < length; ++i) { LChar c = m_data8[i]; if (UNLIKELY(c == smallLetterSharpS)) ++numberSharpSCharacters; ASSERT(u_toupper(c) <= 0xFFFF); UChar upper = u_toupper(c); if (UNLIKELY(upper > 0xFF)) { // Since this upper-cased character does not fit in an 8-bit string, we need to take the 16-bit path. goto upconvert; } data8[i] = static_cast(upper); } if (!numberSharpSCharacters) return newImpl; // We have numberSSCharacters sharp-s characters, but none of the other special characters. newImpl = createUninitialized(m_length + numberSharpSCharacters, data8); LChar* dest = data8; for (int32_t i = 0; i < length; ++i) { LChar c = m_data8[i]; if (c == smallLetterSharpS) { *dest++ = 'S'; *dest++ = 'S'; } else { ASSERT(u_toupper(c) <= 0xFF); *dest++ = static_cast(u_toupper(c)); } } return newImpl; } upconvert: auto upconvertedCharacters = StringView(*this).upconvertedCharacters(); const UChar* source16 = upconvertedCharacters; UChar* data16; auto newImpl = createUninitialized(m_length, data16); // Do a faster loop for the case where all the characters are ASCII. unsigned ored = 0; for (int i = 0; i < length; ++i) { UChar c = source16[i]; ored |= c; data16[i] = toASCIIUpper(c); } if (!(ored & ~0x7F)) return newImpl; // Do a slower implementation for cases that include non-ASCII characters. UErrorCode status = U_ZERO_ERROR; int32_t realLength = u_strToUpper(data16, length, source16, m_length, "", &status); if (U_SUCCESS(status) && realLength == length) return newImpl; newImpl = createUninitialized(realLength, data16); status = U_ZERO_ERROR; u_strToUpper(data16, realLength, source16, m_length, "", &status); if (U_FAILURE(status)) return *this; return newImpl; } static inline bool needsTurkishCasingRules(const AtomicString& localeIdentifier) { // Either "tr" or "az" locale, with case sensitive comparison and allowing for an ignored subtag. UChar first = localeIdentifier[0]; UChar second = localeIdentifier[1]; return ((isASCIIAlphaCaselessEqual(first, 't') && isASCIIAlphaCaselessEqual(second, 'r')) || (isASCIIAlphaCaselessEqual(first, 'a') && isASCIIAlphaCaselessEqual(second, 'z'))) && (localeIdentifier.length() == 2 || localeIdentifier[2] == '-'); } Ref StringImpl::convertToLowercaseWithLocale(const AtomicString& localeIdentifier) { // Use the more-optimized code path most of the time. // Assuming here that the only locale-specific lowercasing is the Turkish casing rules. // FIXME: Could possibly optimize further by looking for the specific sequences // that have locale-specific lowercasing. There are only three of them. if (!needsTurkishCasingRules(localeIdentifier)) return convertToLowercaseWithoutLocale(); // FIXME: Could share more code with the main StringImpl::lower by factoring out // this last part into a shared function that takes a locale string, since this is // just like the end of that function. if (m_length > static_cast(std::numeric_limits::max())) CRASH(); int length = m_length; // Below, we pass in the hardcoded locale "tr". Passing that is more efficient than // allocating memory just to turn localeIdentifier into a C string, and we assume // there is no difference between the uppercasing for "tr" and "az" locales. auto upconvertedCharacters = StringView(*this).upconvertedCharacters(); const UChar* source16 = upconvertedCharacters; UChar* data16; auto newString = createUninitialized(length, data16); UErrorCode status = U_ZERO_ERROR; int realLength = u_strToLower(data16, length, source16, length, "tr", &status); if (U_SUCCESS(status) && realLength == length) return newString; newString = createUninitialized(realLength, data16); status = U_ZERO_ERROR; u_strToLower(data16, realLength, source16, length, "tr", &status); if (U_FAILURE(status)) return *this; return newString; } Ref StringImpl::convertToUppercaseWithLocale(const AtomicString& localeIdentifier) { // Use the more-optimized code path most of the time. // Assuming here that the only locale-specific lowercasing is the Turkish casing rules, // and that the only affected character is lowercase "i". if (!needsTurkishCasingRules(localeIdentifier) || find('i') == notFound) return convertToUppercaseWithoutLocale(); if (m_length > static_cast(std::numeric_limits::max())) CRASH(); int length = m_length; // Below, we pass in the hardcoded locale "tr". Passing that is more efficient than // allocating memory just to turn localeIdentifier into a C string, and we assume // there is no difference between the uppercasing for "tr" and "az" locales. auto upconvertedCharacters = StringView(*this).upconvertedCharacters(); const UChar* source16 = upconvertedCharacters; UChar* data16; auto newString = createUninitialized(length, data16); UErrorCode status = U_ZERO_ERROR; int realLength = u_strToUpper(data16, length, source16, length, "tr", &status); if (U_SUCCESS(status) && realLength == length) return newString; newString = createUninitialized(realLength, data16); status = U_ZERO_ERROR; u_strToUpper(data16, realLength, source16, length, "tr", &status); if (U_FAILURE(status)) return *this; return newString; } Ref StringImpl::foldCase() { if (is8Bit()) { unsigned failingIndex; for (unsigned i = 0; i < m_length; ++i) { auto character = m_data8[i]; if (UNLIKELY(!isASCII(character) || isASCIIUpper(character))) { failingIndex = i; goto SlowPath; } } // String was all ASCII and no uppercase, so just return as-is. return *this; SlowPath: bool need16BitCharacters = false; for (unsigned i = failingIndex; i < m_length; ++i) { auto character = m_data8[i]; if (character == 0xB5 || character == 0xDF) { need16BitCharacters = true; break; } } if (!need16BitCharacters) { LChar* data8; auto folded = createUninitializedInternalNonEmpty(m_length, data8); for (unsigned i = 0; i < failingIndex; ++i) data8[i] = m_data8[i]; for (unsigned i = failingIndex; i < m_length; ++i) { auto character = m_data8[i]; if (isASCII(character)) data8[i] = toASCIILower(character); else { ASSERT(u_foldCase(character, U_FOLD_CASE_DEFAULT) <= 0xFF); data8[i] = static_cast(u_foldCase(character, U_FOLD_CASE_DEFAULT)); } } return folded; } } else { // FIXME: Unclear why we use goto in the 8-bit case, and a different approach in the 16-bit case. bool noUpper = true; unsigned ored = 0; for (unsigned i = 0; i < m_length; ++i) { UChar character = m_data16[i]; if (UNLIKELY(isASCIIUpper(character))) noUpper = false; ored |= character; } if (!(ored & ~0x7F)) { if (noUpper) { // String was all ASCII and no uppercase, so just return as-is. return *this; } UChar* data16; auto folded = createUninitializedInternalNonEmpty(m_length, data16); for (unsigned i = 0; i < m_length; ++i) data16[i] = toASCIILower(m_data16[i]); return folded; } } if (m_length > static_cast(std::numeric_limits::max())) CRASH(); auto upconvertedCharacters = StringView(*this).upconvertedCharacters(); UChar* data; auto folded = createUninitializedInternalNonEmpty(m_length, data); int32_t length = m_length; UErrorCode status = U_ZERO_ERROR; int32_t realLength = u_strFoldCase(data, length, upconvertedCharacters, length, U_FOLD_CASE_DEFAULT, &status); if (U_SUCCESS(status) && realLength == length) return folded; ASSERT(realLength > length); folded = createUninitializedInternalNonEmpty(realLength, data); status = U_ZERO_ERROR; u_strFoldCase(data, realLength, upconvertedCharacters, length, U_FOLD_CASE_DEFAULT, &status); if (U_FAILURE(status)) return *this; return folded; } template ALWAYS_INLINE Ref StringImpl::convertASCIICase(StringImpl& impl, const CharacterType* data, unsigned length) { unsigned failingIndex; for (unsigned i = 0; i < length; ++i) { CharacterType character = data[i]; if (type == CaseConvertType::Lower ? UNLIKELY(isASCIIUpper(character)) : LIKELY(isASCIILower(character))) { failingIndex = i; goto SlowPath; } } return impl; SlowPath: CharacterType* newData; auto newImpl = createUninitializedInternalNonEmpty(length, newData); for (unsigned i = 0; i < failingIndex; ++i) newData[i] = data[i]; for (unsigned i = failingIndex; i < length; ++i) newData[i] = type == CaseConvertType::Lower ? toASCIILower(data[i]) : toASCIIUpper(data[i]); return newImpl; } Ref StringImpl::convertToASCIILowercase() { if (is8Bit()) return convertASCIICase(*this, m_data8, m_length); return convertASCIICase(*this, m_data16, m_length); } Ref StringImpl::convertToASCIIUppercase() { if (is8Bit()) return convertASCIICase(*this, m_data8, m_length); return convertASCIICase(*this, m_data16, m_length); } template inline Ref StringImpl::stripMatchedCharacters(UCharPredicate predicate) { if (!m_length) return *this; unsigned start = 0; unsigned end = m_length - 1; // skip white space from start while (start <= end && predicate(is8Bit() ? m_data8[start] : m_data16[start])) ++start; // only white space if (start > end) return *empty(); // skip white space from end while (end && predicate(is8Bit() ? m_data8[end] : m_data16[end])) --end; if (!start && end == m_length - 1) return *this; if (is8Bit()) return create(m_data8 + start, end + 1 - start); return create(m_data16 + start, end + 1 - start); } class UCharPredicate { public: inline UCharPredicate(CharacterMatchFunctionPtr function): m_function(function) { } inline bool operator()(UChar ch) const { return m_function(ch); } private: const CharacterMatchFunctionPtr m_function; }; class SpaceOrNewlinePredicate { public: inline bool operator()(UChar ch) const { return isSpaceOrNewline(ch); } }; Ref StringImpl::stripWhiteSpace() { return stripMatchedCharacters(SpaceOrNewlinePredicate()); } Ref StringImpl::stripWhiteSpace(IsWhiteSpaceFunctionPtr isWhiteSpace) { return stripMatchedCharacters(UCharPredicate(isWhiteSpace)); } template ALWAYS_INLINE Ref StringImpl::removeCharacters(const CharType* characters, CharacterMatchFunctionPtr findMatch) { const CharType* from = characters; const CharType* fromend = from + m_length; // Assume the common case will not remove any characters while (from != fromend && !findMatch(*from)) ++from; if (from == fromend) return *this; StringBuffer data(m_length); CharType* to = data.characters(); unsigned outc = from - characters; if (outc) memcpy(to, characters, outc * sizeof(CharType)); while (true) { while (from != fromend && findMatch(*from)) ++from; while (from != fromend && !findMatch(*from)) to[outc++] = *from++; if (from == fromend) break; } data.shrink(outc); return adopt(data); } Ref StringImpl::removeCharacters(CharacterMatchFunctionPtr findMatch) { if (is8Bit()) return removeCharacters(characters8(), findMatch); return removeCharacters(characters16(), findMatch); } template inline Ref StringImpl::simplifyMatchedCharactersToSpace(UCharPredicate predicate) { StringBuffer data(m_length); const CharType* from = characters(); const CharType* fromend = from + m_length; int outc = 0; bool changedToSpace = false; CharType* to = data.characters(); while (true) { while (from != fromend && predicate(*from)) { if (*from != ' ') changedToSpace = true; ++from; } while (from != fromend && !predicate(*from)) to[outc++] = *from++; if (from != fromend) to[outc++] = ' '; else break; } if (outc > 0 && to[outc - 1] == ' ') --outc; if (static_cast(outc) == m_length && !changedToSpace) return *this; data.shrink(outc); return adopt(data); } Ref StringImpl::simplifyWhiteSpace() { if (is8Bit()) return StringImpl::simplifyMatchedCharactersToSpace(SpaceOrNewlinePredicate()); return StringImpl::simplifyMatchedCharactersToSpace(SpaceOrNewlinePredicate()); } Ref StringImpl::simplifyWhiteSpace(IsWhiteSpaceFunctionPtr isWhiteSpace) { if (is8Bit()) return StringImpl::simplifyMatchedCharactersToSpace(UCharPredicate(isWhiteSpace)); return StringImpl::simplifyMatchedCharactersToSpace(UCharPredicate(isWhiteSpace)); } int StringImpl::toIntStrict(bool* ok, int base) { if (is8Bit()) return charactersToIntStrict(characters8(), m_length, ok, base); return charactersToIntStrict(characters16(), m_length, ok, base); } unsigned StringImpl::toUIntStrict(bool* ok, int base) { if (is8Bit()) return charactersToUIntStrict(characters8(), m_length, ok, base); return charactersToUIntStrict(characters16(), m_length, ok, base); } int64_t StringImpl::toInt64Strict(bool* ok, int base) { if (is8Bit()) return charactersToInt64Strict(characters8(), m_length, ok, base); return charactersToInt64Strict(characters16(), m_length, ok, base); } uint64_t StringImpl::toUInt64Strict(bool* ok, int base) { if (is8Bit()) return charactersToUInt64Strict(characters8(), m_length, ok, base); return charactersToUInt64Strict(characters16(), m_length, ok, base); } intptr_t StringImpl::toIntPtrStrict(bool* ok, int base) { if (is8Bit()) return charactersToIntPtrStrict(characters8(), m_length, ok, base); return charactersToIntPtrStrict(characters16(), m_length, ok, base); } int StringImpl::toInt(bool* ok) { if (is8Bit()) return charactersToInt(characters8(), m_length, ok); return charactersToInt(characters16(), m_length, ok); } unsigned StringImpl::toUInt(bool* ok) { if (is8Bit()) return charactersToUInt(characters8(), m_length, ok); return charactersToUInt(characters16(), m_length, ok); } int64_t StringImpl::toInt64(bool* ok) { if (is8Bit()) return charactersToInt64(characters8(), m_length, ok); return charactersToInt64(characters16(), m_length, ok); } uint64_t StringImpl::toUInt64(bool* ok) { if (is8Bit()) return charactersToUInt64(characters8(), m_length, ok); return charactersToUInt64(characters16(), m_length, ok); } intptr_t StringImpl::toIntPtr(bool* ok) { if (is8Bit()) return charactersToIntPtr(characters8(), m_length, ok); return charactersToIntPtr(characters16(), m_length, ok); } double StringImpl::toDouble(bool* ok) { if (is8Bit()) return charactersToDouble(characters8(), m_length, ok); return charactersToDouble(characters16(), m_length, ok); } float StringImpl::toFloat(bool* ok) { if (is8Bit()) return charactersToFloat(characters8(), m_length, ok); return charactersToFloat(characters16(), m_length, ok); } // Table is based on ftp://ftp.unicode.org/Public/UNIDATA/CaseFolding.txt static const UChar latin1CaseFoldTable[256] = { 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017, 0x0018, 0x0019, 0x001a, 0x001b, 0x001c, 0x001d, 0x001e, 0x001f, 0x0020, 0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027, 0x0028, 0x0029, 0x002a, 0x002b, 0x002c, 0x002d, 0x002e, 0x002f, 0x0030, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035, 0x0036, 0x0037, 0x0038, 0x0039, 0x003a, 0x003b, 0x003c, 0x003d, 0x003e, 0x003f, 0x0040, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006a, 0x006b, 0x006c, 0x006d, 0x006e, 0x006f, 0x0070, 0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077, 0x0078, 0x0079, 0x007a, 0x005b, 0x005c, 0x005d, 0x005e, 0x005f, 0x0060, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006a, 0x006b, 0x006c, 0x006d, 0x006e, 0x006f, 0x0070, 0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077, 0x0078, 0x0079, 0x007a, 0x007b, 0x007c, 0x007d, 0x007e, 0x007f, 0x0080, 0x0081, 0x0082, 0x0083, 0x0084, 0x0085, 0x0086, 0x0087, 0x0088, 0x0089, 0x008a, 0x008b, 0x008c, 0x008d, 0x008e, 0x008f, 0x0090, 0x0091, 0x0092, 0x0093, 0x0094, 0x0095, 0x0096, 0x0097, 0x0098, 0x0099, 0x009a, 0x009b, 0x009c, 0x009d, 0x009e, 0x009f, 0x00a0, 0x00a1, 0x00a2, 0x00a3, 0x00a4, 0x00a5, 0x00a6, 0x00a7, 0x00a8, 0x00a9, 0x00aa, 0x00ab, 0x00ac, 0x00ad, 0x00ae, 0x00af, 0x00b0, 0x00b1, 0x00b2, 0x00b3, 0x00b4, 0x03bc, 0x00b6, 0x00b7, 0x00b8, 0x00b9, 0x00ba, 0x00bb, 0x00bc, 0x00bd, 0x00be, 0x00bf, 0x00e0, 0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5, 0x00e6, 0x00e7, 0x00e8, 0x00e9, 0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee, 0x00ef, 0x00f0, 0x00f1, 0x00f2, 0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00d7, 0x00f8, 0x00f9, 0x00fa, 0x00fb, 0x00fc, 0x00fd, 0x00fe, 0x00df, 0x00e0, 0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5, 0x00e6, 0x00e7, 0x00e8, 0x00e9, 0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee, 0x00ef, 0x00f0, 0x00f1, 0x00f2, 0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00f7, 0x00f8, 0x00f9, 0x00fa, 0x00fb, 0x00fc, 0x00fd, 0x00fe, 0x00ff, }; static inline bool equalCompatibilityCaseless(const LChar* a, const LChar* b, unsigned length) { while (length--) { if (latin1CaseFoldTable[*a++] != latin1CaseFoldTable[*b++]) return false; } return true; } static inline bool equalCompatibilityCaseless(const UChar* a, const LChar* b, unsigned length) { while (length--) { if (u_foldCase(*a++, U_FOLD_CASE_DEFAULT) != latin1CaseFoldTable[*b++]) return false; } return true; } static inline bool equalCompatibilityCaseless(const LChar* a, const UChar* b, unsigned length) { return equalCompatibilityCaseless(b, a, length); } static inline bool equalCompatibilityCaseless(const UChar* a, const UChar* b, unsigned length) { return !u_memcasecmp(a, b, length, U_FOLD_CASE_DEFAULT); } size_t StringImpl::find(CharacterMatchFunctionPtr matchFunction, unsigned start) { if (is8Bit()) return WTF::find(characters8(), m_length, matchFunction, start); return WTF::find(characters16(), m_length, matchFunction, start); } size_t StringImpl::find(const LChar* matchString, unsigned index) { // Check for null or empty string to match against if (!matchString) return notFound; size_t matchStringLength = strlen(reinterpret_cast(matchString)); if (matchStringLength > std::numeric_limits::max()) CRASH(); unsigned matchLength = matchStringLength; if (!matchLength) return std::min(index, length()); // Optimization 1: fast case for strings of length 1. if (matchLength == 1) { if (is8Bit()) return WTF::find(characters8(), length(), matchString[0], index); return WTF::find(characters16(), length(), *matchString, index); } // Check index & matchLength are in range. if (index > length()) return notFound; unsigned searchLength = length() - index; if (matchLength > searchLength) return notFound; // delta is the number of additional times to test; delta == 0 means test only once. unsigned delta = searchLength - matchLength; // Optimization 2: keep a running hash of the strings, // only call equal if the hashes match. if (is8Bit()) { const LChar* searchCharacters = characters8() + index; unsigned searchHash = 0; unsigned matchHash = 0; for (unsigned i = 0; i < matchLength; ++i) { searchHash += searchCharacters[i]; matchHash += matchString[i]; } unsigned i = 0; while (searchHash != matchHash || !equal(searchCharacters + i, matchString, matchLength)) { if (i == delta) return notFound; searchHash += searchCharacters[i + matchLength]; searchHash -= searchCharacters[i]; ++i; } return index + i; } const UChar* searchCharacters = characters16() + index; unsigned searchHash = 0; unsigned matchHash = 0; for (unsigned i = 0; i < matchLength; ++i) { searchHash += searchCharacters[i]; matchHash += matchString[i]; } unsigned i = 0; while (searchHash != matchHash || !equal(searchCharacters + i, matchString, matchLength)) { if (i == delta) return notFound; searchHash += searchCharacters[i + matchLength]; searchHash -= searchCharacters[i]; ++i; } return index + i; } size_t StringImpl::findIgnoringCase(const LChar* matchString, unsigned index) { // Check for null or empty string to match against if (!matchString) return notFound; size_t matchStringLength = strlen(reinterpret_cast(matchString)); if (matchStringLength > std::numeric_limits::max()) CRASH(); unsigned matchLength = matchStringLength; if (!matchLength) return std::min(index, length()); // Check index & matchLength are in range. if (index > length()) return notFound; unsigned searchLength = length() - index; if (matchLength > searchLength) return notFound; // delta is the number of additional times to test; delta == 0 means test only once. unsigned delta = searchLength - matchLength; if (is8Bit()) { const LChar* searchCharacters = characters8() + index; unsigned i = 0; while (!equalCompatibilityCaseless(searchCharacters + i, matchString, matchLength)) { if (i == delta) return notFound; ++i; } return index + i; } const UChar* searchCharacters = characters16() + index; unsigned i = 0; while (!equalCompatibilityCaseless(searchCharacters + i, matchString, matchLength)) { if (i == delta) return notFound; ++i; } return index + i; } size_t StringImpl::find(StringImpl* matchString) { // Check for null string to match against if (UNLIKELY(!matchString)) return notFound; unsigned matchLength = matchString->length(); // Optimization 1: fast case for strings of length 1. if (matchLength == 1) { if (is8Bit()) { if (matchString->is8Bit()) return WTF::find(characters8(), length(), matchString->characters8()[0]); return WTF::find(characters8(), length(), matchString->characters16()[0]); } if (matchString->is8Bit()) return WTF::find(characters16(), length(), matchString->characters8()[0]); return WTF::find(characters16(), length(), matchString->characters16()[0]); } // Check matchLength is in range. if (matchLength > length()) return notFound; // Check for empty string to match against if (UNLIKELY(!matchLength)) return 0; if (is8Bit()) { if (matchString->is8Bit()) return findInner(characters8(), matchString->characters8(), 0, length(), matchLength); return findInner(characters8(), matchString->characters16(), 0, length(), matchLength); } if (matchString->is8Bit()) return findInner(characters16(), matchString->characters8(), 0, length(), matchLength); return findInner(characters16(), matchString->characters16(), 0, length(), matchLength); } size_t StringImpl::find(StringImpl* matchString, unsigned index) { // Check for null or empty string to match against if (UNLIKELY(!matchString)) return notFound; return findCommon(*this, *matchString, index); } template ALWAYS_INLINE static size_t findIgnoringCaseInner(const SearchCharacterType* searchCharacters, const MatchCharacterType* matchCharacters, unsigned index, unsigned searchLength, unsigned matchLength) { // delta is the number of additional times to test; delta == 0 means test only once. unsigned delta = searchLength - matchLength; unsigned i = 0; // keep looping until we match while (!equalCompatibilityCaseless(searchCharacters + i, matchCharacters, matchLength)) { if (i == delta) return notFound; ++i; } return index + i; } size_t StringImpl::findIgnoringCase(StringImpl* matchString, unsigned index) { // Check for null or empty string to match against if (!matchString) return notFound; unsigned matchLength = matchString->length(); if (!matchLength) return std::min(index, length()); // Check index & matchLength are in range. if (index > length()) return notFound; unsigned searchLength = length() - index; if (matchLength > searchLength) return notFound; if (is8Bit()) { if (matchString->is8Bit()) return findIgnoringCaseInner(characters8() + index, matchString->characters8(), index, searchLength, matchLength); return findIgnoringCaseInner(characters8() + index, matchString->characters16(), index, searchLength, matchLength); } if (matchString->is8Bit()) return findIgnoringCaseInner(characters16() + index, matchString->characters8(), index, searchLength, matchLength); return findIgnoringCaseInner(characters16() + index, matchString->characters16(), index, searchLength, matchLength); } size_t StringImpl::findIgnoringASCIICase(const StringImpl& matchString) const { return ::WTF::findIgnoringASCIICase(*this, matchString, 0); } size_t StringImpl::findIgnoringASCIICase(const StringImpl& matchString, unsigned startOffset) const { return ::WTF::findIgnoringASCIICase(*this, matchString, startOffset); } size_t StringImpl::findIgnoringASCIICase(const StringImpl* matchString) const { if (!matchString) return notFound; return ::WTF::findIgnoringASCIICase(*this, *matchString, 0); } size_t StringImpl::findIgnoringASCIICase(const StringImpl* matchString, unsigned startOffset) const { if (!matchString) return notFound; return ::WTF::findIgnoringASCIICase(*this, *matchString, startOffset); } size_t StringImpl::findNextLineStart(unsigned index) { if (is8Bit()) return WTF::findNextLineStart(characters8(), m_length, index); return WTF::findNextLineStart(characters16(), m_length, index); } size_t StringImpl::reverseFind(UChar c, unsigned index) { if (is8Bit()) return WTF::reverseFind(characters8(), m_length, c, index); return WTF::reverseFind(characters16(), m_length, c, index); } template ALWAYS_INLINE static size_t reverseFindInner(const SearchCharacterType* searchCharacters, const MatchCharacterType* matchCharacters, unsigned index, unsigned length, unsigned matchLength) { // Optimization: keep a running hash of the strings, // only call equal if the hashes match. // delta is the number of additional times to test; delta == 0 means test only once. unsigned delta = std::min(index, length - matchLength); unsigned searchHash = 0; unsigned matchHash = 0; for (unsigned i = 0; i < matchLength; ++i) { searchHash += searchCharacters[delta + i]; matchHash += matchCharacters[i]; } // keep looping until we match while (searchHash != matchHash || !equal(searchCharacters + delta, matchCharacters, matchLength)) { if (!delta) return notFound; --delta; searchHash -= searchCharacters[delta + matchLength]; searchHash += searchCharacters[delta]; } return delta; } size_t StringImpl::reverseFind(StringImpl* matchString, unsigned index) { // Check for null or empty string to match against if (!matchString) return notFound; unsigned matchLength = matchString->length(); unsigned ourLength = length(); if (!matchLength) return std::min(index, ourLength); // Optimization 1: fast case for strings of length 1. if (matchLength == 1) { if (is8Bit()) return WTF::reverseFind(characters8(), ourLength, (*matchString)[0], index); return WTF::reverseFind(characters16(), ourLength, (*matchString)[0], index); } // Check index & matchLength are in range. if (matchLength > ourLength) return notFound; if (is8Bit()) { if (matchString->is8Bit()) return reverseFindInner(characters8(), matchString->characters8(), index, ourLength, matchLength); return reverseFindInner(characters8(), matchString->characters16(), index, ourLength, matchLength); } if (matchString->is8Bit()) return reverseFindInner(characters16(), matchString->characters8(), index, ourLength, matchLength); return reverseFindInner(characters16(), matchString->characters16(), index, ourLength, matchLength); } template ALWAYS_INLINE static size_t reverseFindIgnoringCaseInner(const SearchCharacterType* searchCharacters, const MatchCharacterType* matchCharacters, unsigned index, unsigned length, unsigned matchLength) { // delta is the number of additional times to test; delta == 0 means test only once. unsigned delta = std::min(index, length - matchLength); // keep looping until we match while (!equalCompatibilityCaseless(searchCharacters + delta, matchCharacters, matchLength)) { if (!delta) return notFound; --delta; } return delta; } size_t StringImpl::reverseFindIgnoringCase(StringImpl* matchString, unsigned index) { // Check for null or empty string to match against if (!matchString) return notFound; unsigned matchLength = matchString->length(); unsigned ourLength = length(); if (!matchLength) return std::min(index, ourLength); // Check index & matchLength are in range. if (matchLength > ourLength) return notFound; if (is8Bit()) { if (matchString->is8Bit()) return reverseFindIgnoringCaseInner(characters8(), matchString->characters8(), index, ourLength, matchLength); return reverseFindIgnoringCaseInner(characters8(), matchString->characters16(), index, ourLength, matchLength); } if (matchString->is8Bit()) return reverseFindIgnoringCaseInner(characters16(), matchString->characters8(), index, ourLength, matchLength); return reverseFindIgnoringCaseInner(characters16(), matchString->characters16(), index, ourLength, matchLength); } ALWAYS_INLINE static bool equalInner(const StringImpl* stringImpl, unsigned startOffset, const char* matchString, unsigned matchLength, bool caseSensitive) { ASSERT(stringImpl); ASSERT(matchLength <= stringImpl->length()); ASSERT(startOffset + matchLength <= stringImpl->length()); if (caseSensitive) { if (stringImpl->is8Bit()) return equal(stringImpl->characters8() + startOffset, reinterpret_cast(matchString), matchLength); return equal(stringImpl->characters16() + startOffset, reinterpret_cast(matchString), matchLength); } if (stringImpl->is8Bit()) return equalCompatibilityCaseless(stringImpl->characters8() + startOffset, reinterpret_cast(matchString), matchLength); return equalCompatibilityCaseless(stringImpl->characters16() + startOffset, reinterpret_cast(matchString), matchLength); } ALWAYS_INLINE static bool equalInner(const StringImpl& stringImpl, unsigned startOffset, const StringImpl& matchString) { if (startOffset > stringImpl.length()) return false; if (matchString.length() > stringImpl.length()) return false; if (matchString.length() + startOffset > stringImpl.length()) return false; if (stringImpl.is8Bit()) { if (matchString.is8Bit()) return equal(stringImpl.characters8() + startOffset, matchString.characters8(), matchString.length()); return equal(stringImpl.characters8() + startOffset, matchString.characters16(), matchString.length()); } if (matchString.is8Bit()) return equal(stringImpl.characters16() + startOffset, matchString.characters8(), matchString.length()); return equal(stringImpl.characters16() + startOffset, matchString.characters16(), matchString.length()); } bool StringImpl::startsWith(const StringImpl* str) const { if (!str) return false; return ::WTF::startsWith(*this, *str); } bool StringImpl::startsWith(const StringImpl& str) const { return ::WTF::startsWith(*this, str); } bool StringImpl::startsWithIgnoringASCIICase(const StringImpl* prefix) const { if (!prefix) return false; return ::WTF::startsWithIgnoringASCIICase(*this, *prefix); } bool StringImpl::startsWithIgnoringASCIICase(const StringImpl& prefix) const { return ::WTF::startsWithIgnoringASCIICase(*this, prefix); } bool StringImpl::startsWith(UChar character) const { return m_length && (*this)[0] == character; } bool StringImpl::startsWith(const char* matchString, unsigned matchLength, bool caseSensitive) const { ASSERT(matchLength); if (matchLength > length()) return false; return equalInner(this, 0, matchString, matchLength, caseSensitive); } bool StringImpl::hasInfixStartingAt(const StringImpl& matchString, unsigned startOffset) const { return equalInner(*this, startOffset, matchString); } bool StringImpl::endsWith(StringImpl* suffix) { if (!suffix) return false; return ::WTF::endsWith(*this, *suffix); } bool StringImpl::endsWith(StringImpl& suffix) { return ::WTF::endsWith(*this, suffix); } bool StringImpl::endsWith(StringImpl* matchString, bool caseSensitive) { ASSERT(matchString); if (m_length >= matchString->m_length) { unsigned start = m_length - matchString->m_length; return (caseSensitive ? find(matchString, start) : findIgnoringCase(matchString, start)) == start; } return false; } bool StringImpl::endsWithIgnoringASCIICase(const StringImpl* suffix) const { if (!suffix) return false; return ::WTF::endsWithIgnoringASCIICase(*this, *suffix); } bool StringImpl::endsWithIgnoringASCIICase(const StringImpl& suffix) const { return ::WTF::endsWithIgnoringASCIICase(*this, suffix); } bool StringImpl::endsWith(UChar character) const { return m_length && (*this)[m_length - 1] == character; } bool StringImpl::endsWith(const char* matchString, unsigned matchLength, bool caseSensitive) const { ASSERT(matchLength); if (matchLength > length()) return false; unsigned startOffset = length() - matchLength; return equalInner(this, startOffset, matchString, matchLength, caseSensitive); } bool StringImpl::hasInfixEndingAt(const StringImpl& matchString, unsigned endOffset) const { if (endOffset < matchString.length()) return false; return equalInner(*this, endOffset - matchString.length(), matchString); } Ref StringImpl::replace(UChar oldC, UChar newC) { if (oldC == newC) return *this; unsigned i; for (i = 0; i != m_length; ++i) { UChar c = is8Bit() ? m_data8[i] : m_data16[i]; if (c == oldC) break; } if (i == m_length) return *this; if (is8Bit()) { if (oldC > 0xff) // Looking for a 16 bit char in an 8 bit string, we're done. return *this; if (newC <= 0xff) { LChar* data; LChar oldChar = static_cast(oldC); LChar newChar = static_cast(newC); auto newImpl = createUninitializedInternalNonEmpty(m_length, data); for (i = 0; i != m_length; ++i) { LChar ch = m_data8[i]; if (ch == oldChar) ch = newChar; data[i] = ch; } return newImpl; } // There is the possibility we need to up convert from 8 to 16 bit, // create a 16 bit string for the result. UChar* data; auto newImpl = createUninitializedInternalNonEmpty(m_length, data); for (i = 0; i != m_length; ++i) { UChar ch = m_data8[i]; if (ch == oldC) ch = newC; data[i] = ch; } return newImpl; } UChar* data; auto newImpl = createUninitializedInternalNonEmpty(m_length, data); for (i = 0; i != m_length; ++i) { UChar ch = m_data16[i]; if (ch == oldC) ch = newC; data[i] = ch; } return newImpl; } Ref StringImpl::replace(unsigned position, unsigned lengthToReplace, StringImpl* str) { position = std::min(position, length()); lengthToReplace = std::min(lengthToReplace, length() - position); unsigned lengthToInsert = str ? str->length() : 0; if (!lengthToReplace && !lengthToInsert) return *this; if ((length() - lengthToReplace) >= (std::numeric_limits::max() - lengthToInsert)) CRASH(); if (is8Bit() && (!str || str->is8Bit())) { LChar* data; auto newImpl = createUninitialized(length() - lengthToReplace + lengthToInsert, data); memcpy(data, m_data8, position * sizeof(LChar)); if (str) memcpy(data + position, str->m_data8, lengthToInsert * sizeof(LChar)); memcpy(data + position + lengthToInsert, m_data8 + position + lengthToReplace, (length() - position - lengthToReplace) * sizeof(LChar)); return newImpl; } UChar* data; auto newImpl = createUninitialized(length() - lengthToReplace + lengthToInsert, data); if (is8Bit()) for (unsigned i = 0; i < position; ++i) data[i] = m_data8[i]; else memcpy(data, m_data16, position * sizeof(UChar)); if (str) { if (str->is8Bit()) for (unsigned i = 0; i < lengthToInsert; ++i) data[i + position] = str->m_data8[i]; else memcpy(data + position, str->m_data16, lengthToInsert * sizeof(UChar)); } if (is8Bit()) { for (unsigned i = 0; i < length() - position - lengthToReplace; ++i) data[i + position + lengthToInsert] = m_data8[i + position + lengthToReplace]; } else { memcpy(data + position + lengthToInsert, characters16() + position + lengthToReplace, (length() - position - lengthToReplace) * sizeof(UChar)); } return newImpl; } Ref StringImpl::replace(UChar pattern, StringImpl* replacement) { if (!replacement) return *this; if (replacement->is8Bit()) return replace(pattern, replacement->m_data8, replacement->length()); return replace(pattern, replacement->m_data16, replacement->length()); } Ref StringImpl::replace(UChar pattern, const LChar* replacement, unsigned repStrLength) { ASSERT(replacement); size_t srcSegmentStart = 0; unsigned matchCount = 0; // Count the matches. while ((srcSegmentStart = find(pattern, srcSegmentStart)) != notFound) { ++matchCount; ++srcSegmentStart; } // If we have 0 matches then we don't have to do any more work. if (!matchCount) return *this; if (repStrLength && matchCount > std::numeric_limits::max() / repStrLength) CRASH(); unsigned replaceSize = matchCount * repStrLength; unsigned newSize = m_length - matchCount; if (newSize >= (std::numeric_limits::max() - replaceSize)) CRASH(); newSize += replaceSize; // Construct the new data. size_t srcSegmentEnd; unsigned srcSegmentLength; srcSegmentStart = 0; unsigned dstOffset = 0; if (is8Bit()) { LChar* data; auto newImpl = createUninitialized(newSize, data); while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) { srcSegmentLength = srcSegmentEnd - srcSegmentStart; memcpy(data + dstOffset, m_data8 + srcSegmentStart, srcSegmentLength * sizeof(LChar)); dstOffset += srcSegmentLength; memcpy(data + dstOffset, replacement, repStrLength * sizeof(LChar)); dstOffset += repStrLength; srcSegmentStart = srcSegmentEnd + 1; } srcSegmentLength = m_length - srcSegmentStart; memcpy(data + dstOffset, m_data8 + srcSegmentStart, srcSegmentLength * sizeof(LChar)); ASSERT(dstOffset + srcSegmentLength == newImpl.get().length()); return newImpl; } UChar* data; auto newImpl = createUninitialized(newSize, data); while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) { srcSegmentLength = srcSegmentEnd - srcSegmentStart; memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar)); dstOffset += srcSegmentLength; for (unsigned i = 0; i < repStrLength; ++i) data[i + dstOffset] = replacement[i]; dstOffset += repStrLength; srcSegmentStart = srcSegmentEnd + 1; } srcSegmentLength = m_length - srcSegmentStart; memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar)); ASSERT(dstOffset + srcSegmentLength == newImpl.get().length()); return newImpl; } Ref StringImpl::replace(UChar pattern, const UChar* replacement, unsigned repStrLength) { ASSERT(replacement); size_t srcSegmentStart = 0; unsigned matchCount = 0; // Count the matches. while ((srcSegmentStart = find(pattern, srcSegmentStart)) != notFound) { ++matchCount; ++srcSegmentStart; } // If we have 0 matches then we don't have to do any more work. if (!matchCount) return *this; if (repStrLength && matchCount > std::numeric_limits::max() / repStrLength) CRASH(); unsigned replaceSize = matchCount * repStrLength; unsigned newSize = m_length - matchCount; if (newSize >= (std::numeric_limits::max() - replaceSize)) CRASH(); newSize += replaceSize; // Construct the new data. size_t srcSegmentEnd; unsigned srcSegmentLength; srcSegmentStart = 0; unsigned dstOffset = 0; if (is8Bit()) { UChar* data; auto newImpl = createUninitialized(newSize, data); while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) { srcSegmentLength = srcSegmentEnd - srcSegmentStart; for (unsigned i = 0; i < srcSegmentLength; ++i) data[i + dstOffset] = m_data8[i + srcSegmentStart]; dstOffset += srcSegmentLength; memcpy(data + dstOffset, replacement, repStrLength * sizeof(UChar)); dstOffset += repStrLength; srcSegmentStart = srcSegmentEnd + 1; } srcSegmentLength = m_length - srcSegmentStart; for (unsigned i = 0; i < srcSegmentLength; ++i) data[i + dstOffset] = m_data8[i + srcSegmentStart]; ASSERT(dstOffset + srcSegmentLength == newImpl.get().length()); return newImpl; } UChar* data; auto newImpl = createUninitialized(newSize, data); while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) { srcSegmentLength = srcSegmentEnd - srcSegmentStart; memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar)); dstOffset += srcSegmentLength; memcpy(data + dstOffset, replacement, repStrLength * sizeof(UChar)); dstOffset += repStrLength; srcSegmentStart = srcSegmentEnd + 1; } srcSegmentLength = m_length - srcSegmentStart; memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar)); ASSERT(dstOffset + srcSegmentLength == newImpl.get().length()); return newImpl; } Ref StringImpl::replace(StringImpl* pattern, StringImpl* replacement) { if (!pattern || !replacement) return *this; unsigned patternLength = pattern->length(); if (!patternLength) return *this; unsigned repStrLength = replacement->length(); size_t srcSegmentStart = 0; unsigned matchCount = 0; // Count the matches. while ((srcSegmentStart = find(pattern, srcSegmentStart)) != notFound) { ++matchCount; srcSegmentStart += patternLength; } // If we have 0 matches, we don't have to do any more work if (!matchCount) return *this; unsigned newSize = m_length - matchCount * patternLength; if (repStrLength && matchCount > std::numeric_limits::max() / repStrLength) CRASH(); if (newSize > (std::numeric_limits::max() - matchCount * repStrLength)) CRASH(); newSize += matchCount * repStrLength; // Construct the new data size_t srcSegmentEnd; unsigned srcSegmentLength; srcSegmentStart = 0; unsigned dstOffset = 0; bool srcIs8Bit = is8Bit(); bool replacementIs8Bit = replacement->is8Bit(); // There are 4 cases: // 1. This and replacement are both 8 bit. // 2. This and replacement are both 16 bit. // 3. This is 8 bit and replacement is 16 bit. // 4. This is 16 bit and replacement is 8 bit. if (srcIs8Bit && replacementIs8Bit) { // Case 1 LChar* data; auto newImpl = createUninitialized(newSize, data); while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) { srcSegmentLength = srcSegmentEnd - srcSegmentStart; memcpy(data + dstOffset, m_data8 + srcSegmentStart, srcSegmentLength * sizeof(LChar)); dstOffset += srcSegmentLength; memcpy(data + dstOffset, replacement->m_data8, repStrLength * sizeof(LChar)); dstOffset += repStrLength; srcSegmentStart = srcSegmentEnd + patternLength; } srcSegmentLength = m_length - srcSegmentStart; memcpy(data + dstOffset, m_data8 + srcSegmentStart, srcSegmentLength * sizeof(LChar)); ASSERT(dstOffset + srcSegmentLength == newImpl.get().length()); return newImpl; } UChar* data; auto newImpl = createUninitialized(newSize, data); while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) { srcSegmentLength = srcSegmentEnd - srcSegmentStart; if (srcIs8Bit) { // Case 3. for (unsigned i = 0; i < srcSegmentLength; ++i) data[i + dstOffset] = m_data8[i + srcSegmentStart]; } else { // Case 2 & 4. memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar)); } dstOffset += srcSegmentLength; if (replacementIs8Bit) { // Cases 2 & 3. for (unsigned i = 0; i < repStrLength; ++i) data[i + dstOffset] = replacement->m_data8[i]; } else { // Case 4 memcpy(data + dstOffset, replacement->m_data16, repStrLength * sizeof(UChar)); } dstOffset += repStrLength; srcSegmentStart = srcSegmentEnd + patternLength; } srcSegmentLength = m_length - srcSegmentStart; if (srcIs8Bit) { // Case 3. for (unsigned i = 0; i < srcSegmentLength; ++i) data[i + dstOffset] = m_data8[i + srcSegmentStart]; } else { // Cases 2 & 4. memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar)); } ASSERT(dstOffset + srcSegmentLength == newImpl.get().length()); return newImpl; } bool equal(const StringImpl* a, const StringImpl* b) { return equalCommon(a, b); } template inline bool equalInternal(const StringImpl* a, const CharType* b, unsigned length) { if (!a) return !b; if (!b) return false; if (a->length() != length) return false; if (a->is8Bit()) return equal(a->characters8(), b, length); return equal(a->characters16(), b, length); } bool equal(const StringImpl* a, const LChar* b, unsigned length) { return equalInternal(a, b, length); } bool equal(const StringImpl* a, const UChar* b, unsigned length) { return equalInternal(a, b, length); } bool equal(const StringImpl* a, const LChar* b) { if (!a) return !b; if (!b) return !a; unsigned length = a->length(); if (a->is8Bit()) { const LChar* aPtr = a->characters8(); for (unsigned i = 0; i != length; ++i) { LChar bc = b[i]; LChar ac = aPtr[i]; if (!bc) return false; if (ac != bc) return false; } return !b[length]; } const UChar* aPtr = a->characters16(); for (unsigned i = 0; i != length; ++i) { LChar bc = b[i]; if (!bc) return false; if (aPtr[i] != bc) return false; } return !b[length]; } bool equal(const StringImpl& a, const StringImpl& b) { return equalCommon(a, b); } bool equalIgnoringNullity(StringImpl* a, StringImpl* b) { if (!a && b && !b->length()) return true; if (!b && a && !a->length()) return true; return equal(a, b); } bool equalIgnoringASCIICase(const StringImpl* a, const StringImpl* b) { if (a == b) return true; if (!a || !b) return false; return equalIgnoringASCIICaseCommon(*a, *b); } bool equalIgnoringASCIICaseNonNull(const StringImpl* a, const StringImpl* b) { ASSERT(a); ASSERT(b); return equalIgnoringASCIICase(*a, *b); } UCharDirection StringImpl::defaultWritingDirection(bool* hasStrongDirectionality) { for (unsigned i = 0; i < m_length; ++i) { UCharDirection charDirection = u_charDirection(is8Bit() ? m_data8[i] : m_data16[i]); if (charDirection == U_LEFT_TO_RIGHT) { if (hasStrongDirectionality) *hasStrongDirectionality = true; return U_LEFT_TO_RIGHT; } if (charDirection == U_RIGHT_TO_LEFT || charDirection == U_RIGHT_TO_LEFT_ARABIC) { if (hasStrongDirectionality) *hasStrongDirectionality = true; return U_RIGHT_TO_LEFT; } } if (hasStrongDirectionality) *hasStrongDirectionality = false; return U_LEFT_TO_RIGHT; } Ref StringImpl::adopt(StringBuffer& buffer) { unsigned length = buffer.length(); if (!length) return *empty(); return adoptRef(*new StringImpl(buffer.release(), length)); } Ref StringImpl::adopt(StringBuffer& buffer) { unsigned length = buffer.length(); if (!length) return *empty(); return adoptRef(*new StringImpl(buffer.release(), length)); } size_t StringImpl::sizeInBytes() const { // FIXME: support substrings size_t size = length(); if (!is8Bit()) size *= 2; return size + sizeof(*this); } // Helper to write a three-byte UTF-8 code point to the buffer, caller must check room is available. static inline void putUTF8Triple(char*& buffer, UChar ch) { ASSERT(ch >= 0x0800); *buffer++ = static_cast(((ch >> 12) & 0x0F) | 0xE0); *buffer++ = static_cast(((ch >> 6) & 0x3F) | 0x80); *buffer++ = static_cast((ch & 0x3F) | 0x80); } bool StringImpl::utf8Impl(const UChar* characters, unsigned length, char*& buffer, size_t bufferSize, ConversionMode mode) { if (mode == StrictConversionReplacingUnpairedSurrogatesWithFFFD) { const UChar* charactersEnd = characters + length; char* bufferEnd = buffer + bufferSize; while (characters < charactersEnd) { // Use strict conversion to detect unpaired surrogates. ConversionResult result = convertUTF16ToUTF8(&characters, charactersEnd, &buffer, bufferEnd, true); ASSERT(result != targetExhausted); // Conversion fails when there is an unpaired surrogate. // Put replacement character (U+FFFD) instead of the unpaired surrogate. if (result != conversionOK) { ASSERT((0xD800 <= *characters && *characters <= 0xDFFF)); // There should be room left, since one UChar hasn't been converted. ASSERT((buffer + 3) <= bufferEnd); putUTF8Triple(buffer, replacementCharacter); ++characters; } } } else { bool strict = mode == StrictConversion; const UChar* originalCharacters = characters; ConversionResult result = convertUTF16ToUTF8(&characters, characters + length, &buffer, buffer + bufferSize, strict); ASSERT(result != targetExhausted); // (length * 3) should be sufficient for any conversion // Only produced from strict conversion. if (result == sourceIllegal) { ASSERT(strict); return false; } // Check for an unconverted high surrogate. if (result == sourceExhausted) { if (strict) return false; // This should be one unpaired high surrogate. Treat it the same // was as an unpaired high surrogate would have been handled in // the middle of a string with non-strict conversion - which is // to say, simply encode it to UTF-8. ASSERT_UNUSED( originalCharacters, (characters + 1) == (originalCharacters + length)); ASSERT((*characters >= 0xD800) && (*characters <= 0xDBFF)); // There should be room left, since one UChar hasn't been converted. ASSERT((buffer + 3) <= (buffer + bufferSize)); putUTF8Triple(buffer, *characters); } } return true; } CString StringImpl::utf8ForCharacters(const LChar* characters, unsigned length) { if (!length) return CString("", 0); if (length > std::numeric_limits::max() / 3) return CString(); Vector bufferVector(length * 3); char* buffer = bufferVector.data(); const LChar* source = characters; ConversionResult result = convertLatin1ToUTF8(&source, source + length, &buffer, buffer + bufferVector.size()); ASSERT_UNUSED(result, result != targetExhausted); // (length * 3) should be sufficient for any conversion return CString(bufferVector.data(), buffer - bufferVector.data()); } CString StringImpl::utf8ForCharacters(const UChar* characters, unsigned length, ConversionMode mode) { if (!length) return CString("", 0); if (length > std::numeric_limits::max() / 3) return CString(); Vector bufferVector(length * 3); char* buffer = bufferVector.data(); if (!utf8Impl(characters, length, buffer, bufferVector.size(), mode)) return CString(); return CString(bufferVector.data(), buffer - bufferVector.data()); } CString StringImpl::utf8ForRange(unsigned offset, unsigned length, ConversionMode mode) const { ASSERT(offset <= this->length()); ASSERT(offset + length <= this->length()); if (!length) return CString("", 0); // Allocate a buffer big enough to hold all the characters // (an individual UTF-16 UChar can only expand to 3 UTF-8 bytes). // Optimization ideas, if we find this function is hot: // * We could speculatively create a CStringBuffer to contain 'length' // characters, and resize if necessary (i.e. if the buffer contains // non-ascii characters). (Alternatively, scan the buffer first for // ascii characters, so we know this will be sufficient). // * We could allocate a CStringBuffer with an appropriate size to // have a good chance of being able to write the string into the // buffer without reallocing (say, 1.5 x length). if (length > std::numeric_limits::max() / 3) return CString(); Vector bufferVector(length * 3); char* buffer = bufferVector.data(); if (is8Bit()) { const LChar* characters = this->characters8() + offset; ConversionResult result = convertLatin1ToUTF8(&characters, characters + length, &buffer, buffer + bufferVector.size()); ASSERT_UNUSED(result, result != targetExhausted); // (length * 3) should be sufficient for any conversion } else { if (!utf8Impl(this->characters16() + offset, length, buffer, bufferVector.size(), mode)) return CString(); } return CString(bufferVector.data(), buffer - bufferVector.data()); } CString StringImpl::utf8(ConversionMode mode) const { return utf8ForRange(0, length(), mode); } bool equalIgnoringNullity(const UChar* a, size_t aLength, StringImpl* b) { if (!b) return !aLength; if (aLength != b->length()) return false; if (b->is8Bit()) { const LChar* bCharacters = b->characters8(); for (unsigned i = 0; i < aLength; ++i) { if (a[i] != bCharacters[i]) return false; } return true; } return !memcmp(a, b->characters16(), b->length() * sizeof(UChar)); } } // namespace WTF