/* * (C) 1999 Lars Knoll (knoll@kde.org) * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved. * Copyright (C) 2007-2009 Torch Mobile, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "WTFString.h" #include "IntegerToStringConversion.h" #include #include #include #include #include #include #include #include #include #include #include #include namespace WTF { using namespace Unicode; // Construct a string with UTF-16 data. String::String(const UChar* characters, unsigned length) { if (characters) m_impl = StringImpl::create(characters, length); } // Construct a string with UTF-16 data, from a null-terminated source. String::String(const UChar* str) { if (!str) return; m_impl = StringImpl::create(str, lengthOfNullTerminatedString(str)); } // Construct a string with latin1 data. String::String(const LChar* characters, unsigned length) { if (characters) m_impl = StringImpl::create(characters, length); } String::String(const char* characters, unsigned length) { if (characters) m_impl = StringImpl::create(reinterpret_cast(characters), length); } // Construct a string with latin1 data, from a null-terminated source. String::String(const LChar* characters) { if (characters) m_impl = StringImpl::create(characters); } String::String(const char* characters) { if (characters) m_impl = StringImpl::create(reinterpret_cast(characters)); } String::String(ASCIILiteral characters) : m_impl(StringImpl::createFromLiteral(characters)) { } void String::append(const String& str) { // FIXME: This is extremely inefficient. So much so that we might want to take this out of String's API. if (str.isEmpty()) return; if (str.m_impl) { if (m_impl) { if (m_impl->is8Bit() && str.m_impl->is8Bit()) { LChar* data; if (str.length() > std::numeric_limits::max() - m_impl->length()) CRASH(); auto newImpl = StringImpl::createUninitialized(m_impl->length() + str.length(), data); memcpy(data, m_impl->characters8(), m_impl->length() * sizeof(LChar)); memcpy(data + m_impl->length(), str.characters8(), str.length() * sizeof(LChar)); m_impl = WTFMove(newImpl); return; } UChar* data; if (str.length() > std::numeric_limits::max() - m_impl->length()) CRASH(); auto newImpl = StringImpl::createUninitialized(m_impl->length() + str.length(), data); StringView(*m_impl).getCharactersWithUpconvert(data); StringView(str).getCharactersWithUpconvert(data + m_impl->length()); m_impl = WTFMove(newImpl); } else m_impl = str.m_impl; } } void String::append(LChar character) { // FIXME: This is extremely inefficient. So much so that we might want to take this out of String's API. if (!m_impl) { m_impl = StringImpl::create(&character, 1); return; } if (!is8Bit()) { append(static_cast(character)); return; } if (m_impl->length() >= std::numeric_limits::max()) CRASH(); LChar* data; auto newImpl = StringImpl::createUninitialized(m_impl->length() + 1, data); memcpy(data, m_impl->characters8(), m_impl->length()); data[m_impl->length()] = character; m_impl = WTFMove(newImpl); } void String::append(UChar character) { // FIXME: This is extremely inefficient. So much so that we might want to take this out of String's API. if (!m_impl) { m_impl = StringImpl::create(&character, 1); return; } if (character <= 0xFF && is8Bit()) { append(static_cast(character)); return; } if (m_impl->length() >= std::numeric_limits::max()) CRASH(); UChar* data; auto newImpl = StringImpl::createUninitialized(m_impl->length() + 1, data); StringView(*m_impl).getCharactersWithUpconvert(data); data[m_impl->length()] = character; m_impl = WTFMove(newImpl); } int codePointCompare(const String& a, const String& b) { return codePointCompare(a.impl(), b.impl()); } void String::insert(const String& string, unsigned position) { // FIXME: This is extremely inefficient. So much so that we might want to take this out of String's API. unsigned lengthToInsert = string.length(); if (!lengthToInsert) { if (string.isNull()) return; if (isNull()) m_impl = string.impl(); return; } if (position >= length()) { append(string); return; } if (lengthToInsert > std::numeric_limits::max() - length()) CRASH(); if (is8Bit() && string.is8Bit()) { LChar* data; auto newString = StringImpl::createUninitialized(length() + lengthToInsert, data); StringView(*m_impl).substring(0, position).getCharactersWithUpconvert(data); StringView(string).getCharactersWithUpconvert(data + position); StringView(*m_impl).substring(position).getCharactersWithUpconvert(data + position + lengthToInsert); m_impl = WTFMove(newString); } else { UChar* data; auto newString = StringImpl::createUninitialized(length() + lengthToInsert, data); StringView(*m_impl).substring(0, position).getCharactersWithUpconvert(data); StringView(string).getCharactersWithUpconvert(data + position); StringView(*m_impl).substring(position).getCharactersWithUpconvert(data + position + lengthToInsert); m_impl = WTFMove(newString); } } void String::append(const LChar* charactersToAppend, unsigned lengthToAppend) { // FIXME: This is extremely inefficient. So much so that we might want to take this out of String's API. if (!m_impl) { if (!charactersToAppend) return; m_impl = StringImpl::create(charactersToAppend, lengthToAppend); return; } if (!lengthToAppend) return; ASSERT(charactersToAppend); unsigned strLength = m_impl->length(); if (m_impl->is8Bit()) { if (lengthToAppend > std::numeric_limits::max() - strLength) CRASH(); LChar* data; auto newImpl = StringImpl::createUninitialized(strLength + lengthToAppend, data); StringImpl::copyChars(data, m_impl->characters8(), strLength); StringImpl::copyChars(data + strLength, charactersToAppend, lengthToAppend); m_impl = WTFMove(newImpl); return; } if (lengthToAppend > std::numeric_limits::max() - strLength) CRASH(); UChar* data; auto newImpl = StringImpl::createUninitialized(length() + lengthToAppend, data); StringImpl::copyChars(data, m_impl->characters16(), strLength); StringImpl::copyChars(data + strLength, charactersToAppend, lengthToAppend); m_impl = WTFMove(newImpl); } void String::append(const UChar* charactersToAppend, unsigned lengthToAppend) { // FIXME: This is extremely inefficient. So much so that we might want to take this out of String's API. if (!m_impl) { if (!charactersToAppend) return; m_impl = StringImpl::create(charactersToAppend, lengthToAppend); return; } if (!lengthToAppend) return; unsigned strLength = m_impl->length(); ASSERT(charactersToAppend); if (lengthToAppend > std::numeric_limits::max() - strLength) CRASH(); UChar* data; auto newImpl = StringImpl::createUninitialized(strLength + lengthToAppend, data); if (m_impl->is8Bit()) StringImpl::copyChars(data, characters8(), strLength); else StringImpl::copyChars(data, characters16(), strLength); StringImpl::copyChars(data + strLength, charactersToAppend, lengthToAppend); m_impl = WTFMove(newImpl); } UChar32 String::characterStartingAt(unsigned i) const { if (!m_impl || i >= m_impl->length()) return 0; return m_impl->characterStartingAt(i); } void String::truncate(unsigned position) { if (m_impl) m_impl = m_impl->substring(0, position); } template inline void String::removeInternal(const CharacterType* characters, unsigned position, int lengthToRemove) { CharacterType* data; auto newImpl = StringImpl::createUninitialized(length() - lengthToRemove, data); memcpy(data, characters, position * sizeof(CharacterType)); memcpy(data + position, characters + position + lengthToRemove, (length() - lengthToRemove - position) * sizeof(CharacterType)); m_impl = WTFMove(newImpl); } void String::remove(unsigned position, int lengthToRemove) { if (lengthToRemove <= 0) return; if (position >= length()) return; if (static_cast(lengthToRemove) > length() - position) lengthToRemove = length() - position; if (is8Bit()) { removeInternal(characters8(), position, lengthToRemove); return; } removeInternal(characters16(), position, lengthToRemove); } String String::substring(unsigned pos, unsigned len) const { if (!m_impl) return String(); return m_impl->substring(pos, len); } String String::substringSharingImpl(unsigned offset, unsigned length) const { // FIXME: We used to check against a limit of Heap::minExtraCost / sizeof(UChar). unsigned stringLength = this->length(); offset = std::min(offset, stringLength); length = std::min(length, stringLength - offset); if (!offset && length == stringLength) return *this; return String(StringImpl::createSubstringSharingImpl(*m_impl, offset, length)); } String String::convertToASCIILowercase() const { // FIXME: Should this function, and the many others like it, be inlined? if (!m_impl) return String(); return m_impl->convertToASCIILowercase(); } String String::convertToASCIIUppercase() const { // FIXME: Should this function, and the many others like it, be inlined? if (!m_impl) return String(); return m_impl->convertToASCIIUppercase(); } String String::convertToLowercaseWithoutLocale() const { if (!m_impl) return String(); return m_impl->convertToLowercaseWithoutLocale(); } String String::convertToUppercaseWithoutLocale() const { if (!m_impl) return String(); return m_impl->convertToUppercaseWithoutLocale(); } String String::convertToLowercaseWithLocale(const AtomicString& localeIdentifier) const { if (!m_impl) return String(); return m_impl->convertToLowercaseWithLocale(localeIdentifier); } String String::convertToUppercaseWithLocale(const AtomicString& localeIdentifier) const { if (!m_impl) return String(); return m_impl->convertToUppercaseWithLocale(localeIdentifier); } String String::stripWhiteSpace() const { if (!m_impl) return String(); return m_impl->stripWhiteSpace(); } String String::stripWhiteSpace(IsWhiteSpaceFunctionPtr isWhiteSpace) const { if (!m_impl) return String(); return m_impl->stripWhiteSpace(isWhiteSpace); } String String::simplifyWhiteSpace() const { if (!m_impl) return String(); return m_impl->simplifyWhiteSpace(); } String String::simplifyWhiteSpace(IsWhiteSpaceFunctionPtr isWhiteSpace) const { if (!m_impl) return String(); return m_impl->simplifyWhiteSpace(isWhiteSpace); } String String::removeCharacters(CharacterMatchFunctionPtr findMatch) const { if (!m_impl) return String(); return m_impl->removeCharacters(findMatch); } String String::foldCase() const { if (!m_impl) return String(); return m_impl->foldCase(); } bool String::percentage(int& result) const { if (!m_impl || !m_impl->length()) return false; if ((*m_impl)[m_impl->length() - 1] != '%') return false; if (m_impl->is8Bit()) result = charactersToIntStrict(m_impl->characters8(), m_impl->length() - 1); else result = charactersToIntStrict(m_impl->characters16(), m_impl->length() - 1); return true; } Vector String::charactersWithNullTermination() const { Vector result; if (m_impl) { result.reserveInitialCapacity(length() + 1); if (is8Bit()) { const LChar* characters8 = m_impl->characters8(); for (size_t i = 0; i < length(); ++i) result.uncheckedAppend(characters8[i]); } else { const UChar* characters16 = m_impl->characters16(); result.append(characters16, m_impl->length()); } result.append(0); } return result; } String String::format(const char *format, ...) { va_list args; va_start(args, format); #if USE(CF) && !OS(WINDOWS) if (strstr(format, "%@")) { RetainPtr cfFormat = adoptCF(CFStringCreateWithCString(kCFAllocatorDefault, format, kCFStringEncodingUTF8)); #if COMPILER(CLANG) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wformat-nonliteral" #endif RetainPtr result = adoptCF(CFStringCreateWithFormatAndArguments(kCFAllocatorDefault, nullptr, cfFormat.get(), args)); #if COMPILER(CLANG) #pragma clang diagnostic pop #endif va_end(args); return result.get(); } #endif // USE(CF) && !OS(WINDOWS) // Do the format once to get the length. #if COMPILER(MSVC) int result = _vscprintf(format, args); #else char ch; int result = vsnprintf(&ch, 1, format, args); #endif va_end(args); if (result == 0) return String(""); if (result < 0) return String(); Vector buffer; unsigned len = result; buffer.grow(len + 1); va_start(args, format); // Now do the formatting again, guaranteed to fit. vsnprintf(buffer.data(), buffer.size(), format, args); va_end(args); return StringImpl::create(reinterpret_cast(buffer.data()), len); } String String::number(int number) { return numberToStringSigned(number); } String String::number(unsigned int number) { return numberToStringUnsigned(number); } String String::number(long number) { return numberToStringSigned(number); } String String::number(unsigned long number) { return numberToStringUnsigned(number); } String String::number(long long number) { return numberToStringSigned(number); } String String::number(unsigned long long number) { return numberToStringUnsigned(number); } String String::number(double number, unsigned precision, TrailingZerosTruncatingPolicy trailingZerosTruncatingPolicy) { NumberToStringBuffer buffer; return String(numberToFixedPrecisionString(number, precision, buffer, trailingZerosTruncatingPolicy == TruncateTrailingZeros)); } String String::numberToStringECMAScript(double number) { NumberToStringBuffer buffer; return String(numberToString(number, buffer)); } String String::numberToStringFixedWidth(double number, unsigned decimalPlaces) { NumberToStringBuffer buffer; return String(numberToFixedWidthString(number, decimalPlaces, buffer)); } int String::toIntStrict(bool* ok, int base) const { if (!m_impl) { if (ok) *ok = false; return 0; } return m_impl->toIntStrict(ok, base); } unsigned String::toUIntStrict(bool* ok, int base) const { if (!m_impl) { if (ok) *ok = false; return 0; } return m_impl->toUIntStrict(ok, base); } int64_t String::toInt64Strict(bool* ok, int base) const { if (!m_impl) { if (ok) *ok = false; return 0; } return m_impl->toInt64Strict(ok, base); } uint64_t String::toUInt64Strict(bool* ok, int base) const { if (!m_impl) { if (ok) *ok = false; return 0; } return m_impl->toUInt64Strict(ok, base); } intptr_t String::toIntPtrStrict(bool* ok, int base) const { if (!m_impl) { if (ok) *ok = false; return 0; } return m_impl->toIntPtrStrict(ok, base); } int String::toInt(bool* ok) const { if (!m_impl) { if (ok) *ok = false; return 0; } return m_impl->toInt(ok); } unsigned String::toUInt(bool* ok) const { if (!m_impl) { if (ok) *ok = false; return 0; } return m_impl->toUInt(ok); } int64_t String::toInt64(bool* ok) const { if (!m_impl) { if (ok) *ok = false; return 0; } return m_impl->toInt64(ok); } uint64_t String::toUInt64(bool* ok) const { if (!m_impl) { if (ok) *ok = false; return 0; } return m_impl->toUInt64(ok); } intptr_t String::toIntPtr(bool* ok) const { if (!m_impl) { if (ok) *ok = false; return 0; } return m_impl->toIntPtr(ok); } double String::toDouble(bool* ok) const { if (!m_impl) { if (ok) *ok = false; return 0.0; } return m_impl->toDouble(ok); } float String::toFloat(bool* ok) const { if (!m_impl) { if (ok) *ok = false; return 0.0f; } return m_impl->toFloat(ok); } #if COMPILER_SUPPORTS(CXX_REFERENCE_QUALIFIED_FUNCTIONS) String String::isolatedCopy() const & { if (!m_impl) return String(); return m_impl->isolatedCopy(); } String String::isolatedCopy() && { if (isSafeToSendToAnotherThread()) { // Since we know that our string is a temporary that will be destroyed // we can just steal the m_impl from it, thus avoiding a copy. return String(WTFMove(*this)); } if (!m_impl) return String(); return m_impl->isolatedCopy(); } #else String String::isolatedCopy() const { if (!m_impl) return String(); return m_impl->isolatedCopy(); } #endif bool String::isSafeToSendToAnotherThread() const { if (!impl()) return true; if (isEmpty()) return true; // AtomicStrings are not safe to send between threads as ~StringImpl() // will try to remove them from the wrong AtomicStringTable. if (impl()->isAtomic()) return false; if (impl()->hasOneRef()) return true; return false; } void String::split(const String& separator, bool allowEmptyEntries, Vector& result) const { result.clear(); unsigned startPos = 0; size_t endPos; while ((endPos = find(separator, startPos)) != notFound) { if (allowEmptyEntries || startPos != endPos) result.append(substring(startPos, endPos - startPos)); startPos = endPos + separator.length(); } if (allowEmptyEntries || startPos != length()) result.append(substring(startPos)); } void String::split(UChar separator, bool allowEmptyEntries, Vector& result) const { result.clear(); unsigned startPos = 0; size_t endPos; while ((endPos = find(separator, startPos)) != notFound) { if (allowEmptyEntries || startPos != endPos) result.append(substring(startPos, endPos - startPos)); startPos = endPos + 1; } if (allowEmptyEntries || startPos != length()) result.append(substring(startPos)); } CString String::ascii() const { // Printable ASCII characters 32..127 and the null character are // preserved, characters outside of this range are converted to '?'. unsigned length = this->length(); if (!length) { char* characterBuffer; return CString::newUninitialized(length, characterBuffer); } if (this->is8Bit()) { const LChar* characters = this->characters8(); char* characterBuffer; CString result = CString::newUninitialized(length, characterBuffer); for (unsigned i = 0; i < length; ++i) { LChar ch = characters[i]; characterBuffer[i] = ch && (ch < 0x20 || ch > 0x7f) ? '?' : ch; } return result; } const UChar* characters = this->characters16(); char* characterBuffer; CString result = CString::newUninitialized(length, characterBuffer); for (unsigned i = 0; i < length; ++i) { UChar ch = characters[i]; characterBuffer[i] = ch && (ch < 0x20 || ch > 0x7f) ? '?' : ch; } return result; } CString String::latin1() const { // Basic Latin1 (ISO) encoding - Unicode characters 0..255 are // preserved, characters outside of this range are converted to '?'. unsigned length = this->length(); if (!length) return CString("", 0); if (is8Bit()) return CString(reinterpret_cast(this->characters8()), length); const UChar* characters = this->characters16(); char* characterBuffer; CString result = CString::newUninitialized(length, characterBuffer); for (unsigned i = 0; i < length; ++i) { UChar ch = characters[i]; characterBuffer[i] = ch > 0xff ? '?' : ch; } return result; } CString String::utf8(ConversionMode mode) const { if (!m_impl) return CString("", 0); return m_impl->utf8(mode); } CString String::utf8() const { return utf8(LenientConversion); } String String::make8BitFrom16BitSource(const UChar* source, size_t length) { if (!length) return String(); LChar* destination; String result = String::createUninitialized(length, destination); copyLCharsFromUCharSource(destination, source, length); return result; } String String::make16BitFrom8BitSource(const LChar* source, size_t length) { if (!length) return String(); UChar* destination; String result = String::createUninitialized(length, destination); StringImpl::copyChars(destination, source, length); return result; } String String::fromUTF8(const LChar* stringStart, size_t length) { if (length > std::numeric_limits::max()) CRASH(); if (!stringStart) return String(); if (!length) return emptyString(); if (charactersAreAllASCII(stringStart, length)) return StringImpl::create(stringStart, length); Vector buffer(length); UChar* bufferStart = buffer.data(); UChar* bufferCurrent = bufferStart; const char* stringCurrent = reinterpret_cast(stringStart); if (convertUTF8ToUTF16(&stringCurrent, reinterpret_cast(stringStart + length), &bufferCurrent, bufferCurrent + buffer.size()) != conversionOK) return String(); unsigned utf16Length = bufferCurrent - bufferStart; ASSERT_WITH_SECURITY_IMPLICATION(utf16Length < length); return StringImpl::create(bufferStart, utf16Length); } String String::fromUTF8(const LChar* string) { if (!string) return String(); return fromUTF8(string, strlen(reinterpret_cast(string))); } String String::fromUTF8(const CString& s) { return fromUTF8(s.data()); } String String::fromUTF8WithLatin1Fallback(const LChar* string, size_t size) { String utf8 = fromUTF8(string, size); if (!utf8) return String(string, size); return utf8; } // String Operations static bool isCharacterAllowedInBase(UChar c, int base) { if (c > 0x7F) return false; if (isASCIIDigit(c)) return c - '0' < base; if (isASCIIAlpha(c)) { if (base > 36) base = 36; return (c >= 'a' && c < 'a' + base - 10) || (c >= 'A' && c < 'A' + base - 10); } return false; } template static inline IntegralType toIntegralType(const CharType* data, size_t length, bool* ok, int base) { static const IntegralType integralMax = std::numeric_limits::max(); static const bool isSigned = std::numeric_limits::is_signed; const IntegralType maxMultiplier = integralMax / base; IntegralType value = 0; bool isOk = false; bool isNegative = false; if (!data) goto bye; // skip leading whitespace while (length && isSpaceOrNewline(*data)) { --length; ++data; } if (isSigned && length && *data == '-') { --length; ++data; isNegative = true; } else if (length && *data == '+') { --length; ++data; } if (!length || !isCharacterAllowedInBase(*data, base)) goto bye; while (length && isCharacterAllowedInBase(*data, base)) { --length; IntegralType digitValue; CharType c = *data; if (isASCIIDigit(c)) digitValue = c - '0'; else if (c >= 'a') digitValue = c - 'a' + 10; else digitValue = c - 'A' + 10; if (value > maxMultiplier || (value == maxMultiplier && digitValue > (integralMax % base) + isNegative)) goto bye; value = base * value + digitValue; ++data; } #if COMPILER(MSVC) #pragma warning(push, 0) #pragma warning(disable:4146) #endif if (isNegative) value = -value; #if COMPILER(MSVC) #pragma warning(pop) #endif // skip trailing space while (length && isSpaceOrNewline(*data)) { --length; ++data; } if (!length) isOk = true; bye: if (ok) *ok = isOk; return isOk ? value : 0; } template static unsigned lengthOfCharactersAsInteger(const CharType* data, size_t length) { size_t i = 0; // Allow leading spaces. for (; i != length; ++i) { if (!isSpaceOrNewline(data[i])) break; } // Allow sign. if (i != length && (data[i] == '+' || data[i] == '-')) ++i; // Allow digits. for (; i != length; ++i) { if (!isASCIIDigit(data[i])) break; } return i; } int charactersToIntStrict(const LChar* data, size_t length, bool* ok, int base) { return toIntegralType(data, length, ok, base); } int charactersToIntStrict(const UChar* data, size_t length, bool* ok, int base) { return toIntegralType(data, length, ok, base); } unsigned charactersToUIntStrict(const LChar* data, size_t length, bool* ok, int base) { return toIntegralType(data, length, ok, base); } unsigned charactersToUIntStrict(const UChar* data, size_t length, bool* ok, int base) { return toIntegralType(data, length, ok, base); } int64_t charactersToInt64Strict(const LChar* data, size_t length, bool* ok, int base) { return toIntegralType(data, length, ok, base); } int64_t charactersToInt64Strict(const UChar* data, size_t length, bool* ok, int base) { return toIntegralType(data, length, ok, base); } uint64_t charactersToUInt64Strict(const LChar* data, size_t length, bool* ok, int base) { return toIntegralType(data, length, ok, base); } uint64_t charactersToUInt64Strict(const UChar* data, size_t length, bool* ok, int base) { return toIntegralType(data, length, ok, base); } intptr_t charactersToIntPtrStrict(const LChar* data, size_t length, bool* ok, int base) { return toIntegralType(data, length, ok, base); } intptr_t charactersToIntPtrStrict(const UChar* data, size_t length, bool* ok, int base) { return toIntegralType(data, length, ok, base); } int charactersToInt(const LChar* data, size_t length, bool* ok) { return toIntegralType(data, lengthOfCharactersAsInteger(data, length), ok, 10); } int charactersToInt(const UChar* data, size_t length, bool* ok) { return toIntegralType(data, lengthOfCharactersAsInteger(data, length), ok, 10); } unsigned charactersToUInt(const LChar* data, size_t length, bool* ok) { return toIntegralType(data, lengthOfCharactersAsInteger(data, length), ok, 10); } unsigned charactersToUInt(const UChar* data, size_t length, bool* ok) { return toIntegralType(data, lengthOfCharactersAsInteger(data, length), ok, 10); } int64_t charactersToInt64(const LChar* data, size_t length, bool* ok) { return toIntegralType(data, lengthOfCharactersAsInteger(data, length), ok, 10); } int64_t charactersToInt64(const UChar* data, size_t length, bool* ok) { return toIntegralType(data, lengthOfCharactersAsInteger(data, length), ok, 10); } uint64_t charactersToUInt64(const LChar* data, size_t length, bool* ok) { return toIntegralType(data, lengthOfCharactersAsInteger(data, length), ok, 10); } uint64_t charactersToUInt64(const UChar* data, size_t length, bool* ok) { return toIntegralType(data, lengthOfCharactersAsInteger(data, length), ok, 10); } intptr_t charactersToIntPtr(const LChar* data, size_t length, bool* ok) { return toIntegralType(data, lengthOfCharactersAsInteger(data, length), ok, 10); } intptr_t charactersToIntPtr(const UChar* data, size_t length, bool* ok) { return toIntegralType(data, lengthOfCharactersAsInteger(data, length), ok, 10); } enum TrailingJunkPolicy { DisallowTrailingJunk, AllowTrailingJunk }; template static inline double toDoubleType(const CharType* data, size_t length, bool* ok, size_t& parsedLength) { size_t leadingSpacesLength = 0; while (leadingSpacesLength < length && isASCIISpace(data[leadingSpacesLength])) ++leadingSpacesLength; double number = parseDouble(data + leadingSpacesLength, length - leadingSpacesLength, parsedLength); if (!parsedLength) { if (ok) *ok = false; return 0.0; } parsedLength += leadingSpacesLength; if (ok) *ok = policy == AllowTrailingJunk || parsedLength == length; return number; } double charactersToDouble(const LChar* data, size_t length, bool* ok) { size_t parsedLength; return toDoubleType(data, length, ok, parsedLength); } double charactersToDouble(const UChar* data, size_t length, bool* ok) { size_t parsedLength; return toDoubleType(data, length, ok, parsedLength); } float charactersToFloat(const LChar* data, size_t length, bool* ok) { // FIXME: This will return ok even when the string fits into a double but not a float. size_t parsedLength; return static_cast(toDoubleType(data, length, ok, parsedLength)); } float charactersToFloat(const UChar* data, size_t length, bool* ok) { // FIXME: This will return ok even when the string fits into a double but not a float. size_t parsedLength; return static_cast(toDoubleType(data, length, ok, parsedLength)); } float charactersToFloat(const LChar* data, size_t length, size_t& parsedLength) { // FIXME: This will return ok even when the string fits into a double but not a float. return static_cast(toDoubleType(data, length, 0, parsedLength)); } float charactersToFloat(const UChar* data, size_t length, size_t& parsedLength) { // FIXME: This will return ok even when the string fits into a double but not a float. return static_cast(toDoubleType(data, length, 0, parsedLength)); } const String& emptyString() { static NeverDestroyed emptyString(StringImpl::empty()); return emptyString; } } // namespace WTF #ifndef NDEBUG // For use in the debugger String* string(const char*); Vector asciiDebug(StringImpl* impl); Vector asciiDebug(String& string); void String::show() const { dataLogF("%s\n", asciiDebug(impl()).data()); } String* string(const char* s) { // leaks memory! return new String(s); } Vector asciiDebug(StringImpl* impl) { if (!impl) return asciiDebug(String(ASCIILiteral("[null]")).impl()); Vector buffer; for (unsigned i = 0; i < impl->length(); ++i) { UChar ch = (*impl)[i]; if (isASCIIPrintable(ch)) { if (ch == '\\') buffer.append(ch); buffer.append(ch); } else { buffer.append('\\'); buffer.append('u'); appendUnsignedAsHexFixedSize(ch, buffer, 4); } } buffer.append('\0'); return buffer; } Vector asciiDebug(String& string) { return asciiDebug(string.impl()); } #endif