/* * Copyright (C) 2007, 2014 Apple Inc. All rights reserved. * Copyright (C) 2010 Patrick Gansterer * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "UTF8.h" #include "ASCIICType.h" #include #include namespace WTF { namespace Unicode { inline int inlineUTF8SequenceLengthNonASCII(char b0) { if ((b0 & 0xC0) != 0xC0) return 0; if ((b0 & 0xE0) == 0xC0) return 2; if ((b0 & 0xF0) == 0xE0) return 3; if ((b0 & 0xF8) == 0xF0) return 4; return 0; } inline int inlineUTF8SequenceLength(char b0) { return isASCII(b0) ? 1 : inlineUTF8SequenceLengthNonASCII(b0); } int UTF8SequenceLength(char b0) { return isASCII(b0) ? 1 : inlineUTF8SequenceLengthNonASCII(b0); } int decodeUTF8Sequence(const char* sequence) { // Handle 0-byte sequences (never valid). const unsigned char b0 = sequence[0]; const int length = inlineUTF8SequenceLength(b0); if (length == 0) return -1; // Handle 1-byte sequences (plain ASCII). const unsigned char b1 = sequence[1]; if (length == 1) { if (b1) return -1; return b0; } // Handle 2-byte sequences. if ((b1 & 0xC0) != 0x80) return -1; const unsigned char b2 = sequence[2]; if (length == 2) { if (b2) return -1; const int c = ((b0 & 0x1F) << 6) | (b1 & 0x3F); if (c < 0x80) return -1; return c; } // Handle 3-byte sequences. if ((b2 & 0xC0) != 0x80) return -1; const unsigned char b3 = sequence[3]; if (length == 3) { if (b3) return -1; const int c = ((b0 & 0xF) << 12) | ((b1 & 0x3F) << 6) | (b2 & 0x3F); if (c < 0x800) return -1; // UTF-16 surrogates should never appear in UTF-8 data. if (c >= 0xD800 && c <= 0xDFFF) return -1; return c; } // Handle 4-byte sequences. if ((b3 & 0xC0) != 0x80) return -1; const unsigned char b4 = sequence[4]; if (length == 4) { if (b4) return -1; const int c = ((b0 & 0x7) << 18) | ((b1 & 0x3F) << 12) | ((b2 & 0x3F) << 6) | (b3 & 0x3F); if (c < 0x10000 || c > 0x10FFFF) return -1; return c; } return -1; } // Once the bits are split out into bytes of UTF-8, this is a mask OR-ed // into the first byte, depending on how many bytes follow. There are // as many entries in this table as there are UTF-8 sequence types. // (I.e., one byte sequence, two byte... etc.). Remember that sequencs // for *legal* UTF-8 will be 4 or fewer bytes total. static const unsigned char firstByteMark[7] = { 0x00, 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC }; ConversionResult convertLatin1ToUTF8( const LChar** sourceStart, const LChar* sourceEnd, char** targetStart, char* targetEnd) { ConversionResult result = conversionOK; const LChar* source = *sourceStart; char* target = *targetStart; while (source < sourceEnd) { UChar32 ch; unsigned short bytesToWrite = 0; const UChar32 byteMask = 0xBF; const UChar32 byteMark = 0x80; const LChar* oldSource = source; // In case we have to back up because of target overflow. ch = static_cast(*source++); // Figure out how many bytes the result will require if (ch < (UChar32)0x80) bytesToWrite = 1; else bytesToWrite = 2; target += bytesToWrite; if (target > targetEnd) { source = oldSource; // Back up source pointer! target -= bytesToWrite; result = targetExhausted; break; } switch (bytesToWrite) { // note: everything falls through. case 2: *--target = (char)((ch | byteMark) & byteMask); ch >>= 6; FALLTHROUGH; case 1: *--target = (char)(ch | firstByteMark[bytesToWrite]); } target += bytesToWrite; } *sourceStart = source; *targetStart = target; return result; } ConversionResult convertUTF16ToUTF8( const UChar** sourceStart, const UChar* sourceEnd, char** targetStart, char* targetEnd, bool strict) { ConversionResult result = conversionOK; const UChar* source = *sourceStart; char* target = *targetStart; while (source < sourceEnd) { UChar32 ch; unsigned short bytesToWrite = 0; const UChar32 byteMask = 0xBF; const UChar32 byteMark = 0x80; const UChar* oldSource = source; // In case we have to back up because of target overflow. ch = static_cast(*source++); // If we have a surrogate pair, convert to UChar32 first. if (ch >= 0xD800 && ch <= 0xDBFF) { // If the 16 bits following the high surrogate are in the source buffer... if (source < sourceEnd) { UChar32 ch2 = static_cast(*source); // If it's a low surrogate, convert to UChar32. if (ch2 >= 0xDC00 && ch2 <= 0xDFFF) { ch = ((ch - 0xD800) << 10) + (ch2 - 0xDC00) + 0x0010000; ++source; } else if (strict) { // it's an unpaired high surrogate --source; // return to the illegal value itself result = sourceIllegal; break; } } else { // We don't have the 16 bits following the high surrogate. --source; // return to the high surrogate result = sourceExhausted; break; } } else if (strict) { // UTF-16 surrogate values are illegal in UTF-32 if (ch >= 0xDC00 && ch <= 0xDFFF) { --source; // return to the illegal value itself result = sourceIllegal; break; } } // Figure out how many bytes the result will require if (ch < (UChar32)0x80) { bytesToWrite = 1; } else if (ch < (UChar32)0x800) { bytesToWrite = 2; } else if (ch < (UChar32)0x10000) { bytesToWrite = 3; } else if (ch < (UChar32)0x110000) { bytesToWrite = 4; } else { bytesToWrite = 3; ch = replacementCharacter; } target += bytesToWrite; if (target > targetEnd) { source = oldSource; // Back up source pointer! target -= bytesToWrite; result = targetExhausted; break; } switch (bytesToWrite) { // note: everything falls through. case 4: *--target = (char)((ch | byteMark) & byteMask); ch >>= 6; FALLTHROUGH; case 3: *--target = (char)((ch | byteMark) & byteMask); ch >>= 6; FALLTHROUGH; case 2: *--target = (char)((ch | byteMark) & byteMask); ch >>= 6; FALLTHROUGH; case 1: *--target = (char)(ch | firstByteMark[bytesToWrite]); } target += bytesToWrite; } *sourceStart = source; *targetStart = target; return result; } // This must be called with the length pre-determined by the first byte. // If presented with a length > 4, this returns false. The Unicode // definition of UTF-8 goes up to 4-byte sequences. static bool isLegalUTF8(const unsigned char* source, int length) { unsigned char a; const unsigned char* srcptr = source + length; switch (length) { default: return false; // Everything else falls through when "true"... case 4: if ((a = (*--srcptr)) < 0x80 || a > 0xBF) return false; FALLTHROUGH; case 3: if ((a = (*--srcptr)) < 0x80 || a > 0xBF) return false; FALLTHROUGH; case 2: if ((a = (*--srcptr)) > 0xBF) return false; switch (*source) { // no fall-through in this inner switch case 0xE0: if (a < 0xA0) return false; break; case 0xED: if (a > 0x9F) return false; break; case 0xF0: if (a < 0x90) return false; break; case 0xF4: if (a > 0x8F) return false; break; default: if (a < 0x80) return false; } FALLTHROUGH; case 1: if (*source >= 0x80 && *source < 0xC2) return false; } if (*source > 0xF4) return false; return true; } // Magic values subtracted from a buffer value during UTF8 conversion. // This table contains as many values as there might be trailing bytes // in a UTF-8 sequence. static const UChar32 offsetsFromUTF8[6] = { 0x00000000UL, 0x00003080UL, 0x000E2080UL, 0x03C82080UL, static_cast(0xFA082080UL), static_cast(0x82082080UL) }; static inline UChar32 readUTF8Sequence(const char*& sequence, unsigned length) { UChar32 character = 0; // The cases all fall through. switch (length) { case 6: character += static_cast(*sequence++); character <<= 6; FALLTHROUGH; case 5: character += static_cast(*sequence++); character <<= 6; FALLTHROUGH; case 4: character += static_cast(*sequence++); character <<= 6; FALLTHROUGH; case 3: character += static_cast(*sequence++); character <<= 6; FALLTHROUGH; case 2: character += static_cast(*sequence++); character <<= 6; FALLTHROUGH; case 1: character += static_cast(*sequence++); } return character - offsetsFromUTF8[length - 1]; } ConversionResult convertUTF8ToUTF16( const char** sourceStart, const char* sourceEnd, UChar** targetStart, UChar* targetEnd, bool* sourceAllASCII, bool strict) { ConversionResult result = conversionOK; const char* source = *sourceStart; UChar* target = *targetStart; UChar orAllData = 0; while (source < sourceEnd) { int utf8SequenceLength = inlineUTF8SequenceLength(*source); if (sourceEnd - source < utf8SequenceLength) { result = sourceExhausted; break; } // Do this check whether lenient or strict if (!isLegalUTF8(reinterpret_cast(source), utf8SequenceLength)) { result = sourceIllegal; break; } UChar32 character = readUTF8Sequence(source, utf8SequenceLength); if (target >= targetEnd) { source -= utf8SequenceLength; // Back up source pointer! result = targetExhausted; break; } if (U_IS_BMP(character)) { // UTF-16 surrogate values are illegal in UTF-32 if (U_IS_SURROGATE(character)) { if (strict) { source -= utf8SequenceLength; // return to the illegal value itself result = sourceIllegal; break; } else { *target++ = replacementCharacter; orAllData |= replacementCharacter; } } else { *target++ = character; // normal case orAllData |= character; } } else if (U_IS_SUPPLEMENTARY(character)) { // target is a character in range 0xFFFF - 0x10FFFF if (target + 1 >= targetEnd) { source -= utf8SequenceLength; // Back up source pointer! result = targetExhausted; break; } *target++ = U16_LEAD(character); *target++ = U16_TRAIL(character); orAllData = 0xffff; } else { if (strict) { source -= utf8SequenceLength; // return to the start result = sourceIllegal; break; // Bail out; shouldn't continue } else { *target++ = replacementCharacter; orAllData |= replacementCharacter; } } } *sourceStart = source; *targetStart = target; if (sourceAllASCII) *sourceAllASCII = !(orAllData & ~0x7f); return result; } unsigned calculateStringHashAndLengthFromUTF8MaskingTop8Bits(const char* data, const char* dataEnd, unsigned& dataLength, unsigned& utf16Length) { if (!data) return 0; StringHasher stringHasher; dataLength = 0; utf16Length = 0; while (data < dataEnd || (!dataEnd && *data)) { if (isASCII(*data)) { stringHasher.addCharacter(*data++); dataLength++; utf16Length++; continue; } int utf8SequenceLength = inlineUTF8SequenceLengthNonASCII(*data); dataLength += utf8SequenceLength; if (!dataEnd) { for (int i = 1; i < utf8SequenceLength; ++i) { if (!data[i]) return 0; } } else if (dataEnd - data < utf8SequenceLength) return 0; if (!isLegalUTF8(reinterpret_cast(data), utf8SequenceLength)) return 0; UChar32 character = readUTF8Sequence(data, utf8SequenceLength); ASSERT(!isASCII(character)); if (U_IS_BMP(character)) { // UTF-16 surrogate values are illegal in UTF-32 if (U_IS_SURROGATE(character)) return 0; stringHasher.addCharacter(static_cast(character)); // normal case utf16Length++; } else if (U_IS_SUPPLEMENTARY(character)) { stringHasher.addCharacters(static_cast(U16_LEAD(character)), static_cast(U16_TRAIL(character))); utf16Length += 2; } else return 0; } return stringHasher.hashWithTop8BitsMasked(); } bool equalUTF16WithUTF8(const UChar* a, const char* b, const char* bEnd) { while (b < bEnd) { if (isASCII(*a) || isASCII(*b)) { if (*a++ != *b++) return false; continue; } int utf8SequenceLength = inlineUTF8SequenceLengthNonASCII(*b); if (bEnd - b < utf8SequenceLength) return false; if (!isLegalUTF8(reinterpret_cast(b), utf8SequenceLength)) return false; UChar32 character = readUTF8Sequence(b, utf8SequenceLength); ASSERT(!isASCII(character)); if (U_IS_BMP(character)) { // UTF-16 surrogate values are illegal in UTF-32 if (U_IS_SURROGATE(character)) return false; if (*a++ != character) return false; } else if (U_IS_SUPPLEMENTARY(character)) { if (*a++ != U16_LEAD(character)) return false; if (*a++ != U16_TRAIL(character)) return false; } else return false; } return true; } bool equalLatin1WithUTF8(const LChar* a, const char* b, const char* bEnd) { while (b < bEnd) { if (isASCII(*a) || isASCII(*b)) { if (*a++ != *b++) return false; continue; } if (b + 1 == bEnd) return false; if ((b[0] & 0xE0) != 0xC0 || (b[1] & 0xC0) != 0x80) return false; LChar character = ((b[0] & 0x1F) << 6) | (b[1] & 0x3F); b += 2; if (*a++ != character) return false; } return true; } } // namespace Unicode } // namespace WTF