
Kerbal Operating System Instructions
Documentation

Version 1.0
Unofficial, written as of December 2021, Kerbal Operating System release version 1.3.2.0

Contents

Preface
About kOS instructions
Terminology

1. End of File
2. End of Program
3. No Operation
4. Store
5. Unset
6. Get Member
7. Set Member
8. Get Index
9. Set Index

10. Branch If False
11. Jump / Unconditional Branch
12. Add
13. Subtract
14. Multiply
15. Divide
16. Power
17. Compare Greater Than
18. Compare Less Than
19. Compare Greater Than or Equal
20. Compare Less Than or Equal

21. Compare Equal
22. Compare Not Equal
23. Negate
24. Convert to Boolean
25. Logical Negate / Not
26. Logical And
27. Logical Or
28. Call Function
29. Return from a Function
30. Push
31. Pop
32. Duplicate
33. Swap
34. Evaluate
35. Add Trigger
36. Remove Trigger
37. Wait
38. Get Method
39. Store Local
40. Store Global
41. Push Scope
42. Pop Scope
43. Store Exists
44. Push Delegate
45. Branch True
46. Variable Exists
47. Argument Bottom
48. Test Argument Bottom
49. Test Trigger Cancelled
50. Push Relocate Later
51. Push Delegate Relocate Later
52. Label Reset

Preface

This document is intended to provide a comprehensive list of all current Kerbal Operating System
opcodes/instructions and their functions. This guide builds off of many ideas that are introduced in
the KSM File Docs. That is the format that these instructions are encoded in.

If any parts of this document are outdated or incorrect, please notify us by creating a GitHub issue.

All of the instructions listed in this document are sorted by the value of the instruction's opcode.

In order to understand the types of operands that each instruction takes, also see the KSM File Docs
linked above.

About kOS instructions

As stated in the KSM docs, the kOS CPU is a stack-based computer emulated inside of Kerbal Space
Program. Each instruction begins with an Opcode, which is basically just a number that tells kOS
which instruction we want to run. Each instruction in this list will have the opcode. Opcodes are
written as hexadecimal.

Because stacks work like they do, the first thing put on the stack is the last thing to come out. When
stack arguments are listed on instructions, they are listed in the order they are popped off of the
stack.

Terminology

Instruction - the basic unit of a kOS program

Opcode - the code which identifies instructions

Operand - parameters to the instruction that it goes with

Stack argument - an argument to an instruction stored on the stack

Instructions

End of File

file:///usr/lib/marktext/resources/app.asar/dist/electron/KSM-file-format.md
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Hexadecimal

Opcode 0x31

Operands None

KASM
Mnemonic

eof

Description
This instruction tells kOS that the current program's file has ended. kOS seems
to expect this before an End of Program instruction. This instruction only causes
the kOS CPU to stop executing and abort its context.

End of Program

Opcode 0x32

Operands None

KASM
Mnemonic

eop

Description

This instruction tells kOS that the current program has ended. Which aborts the
current program. This is used to return back to the interpreter context once a
program is finished executing. This can be explicitly written to end the program
early.

No Operation

Opcode 0x33

Operands None

KASM
Mnemonic

nop

Description
Performs no operation: it does nothing. This can be used as a non-efficient way
to try to delay the CPU, or just as a place to put a label in KASM, but it is largely
unused.

Store

Opcode 0x34

Operand 1 String, StringValue

Stack
Argument
1

The value to store

KASM
Mnemonic

sto

Description

Consumes the topmost value of the stack, storing it into a variable named by
the operand of this instruction. This will try to store the value in the lowest
scope it can find the identifier in. If it isn't found in any outer scope, this creates
a new global variable.

Unset

Opcode 0x35

Operands None

Stack
Argument
1

The identifier of the variable

KASM
Mnemonic

uns

Description
Consumes the topmost value of the stack as an identifier, unsetting the variable
referenced by this identifier. This will remove the variable referenced by this
identifier in the innermost scope that it is set in.

Get Member

Opcode 0x36

Operand 1 String, StringValue

Stack
Argument
1

The structure or identifier of the structure

KASM
Mnemonic

gmb

Description
Consumes the topmost value of the stack, getting the suffix of it specified by the
identifier operand and putting that value back on the stack. If this suffix refers to
a method suffix, it will be called with no arguments.

Set Member

Opcode 0x37

Operand 1 String, StringValue

Stack
Argument
1

The structure or identifier of the structure

KASM
Mnemonic

smb

Description
Consumes a value and a destination object from the stack, setting the objects
suffix specified by the identifier operand to the popped value.

Get Index

Opcode 0x38

Operands None

Stack
Argument
1

The index

Stack
Argument
2

The collection

KASM
Mnemonic

gidx

Description
Consumes an index and an target object from the stack, getting the indexed
value from the object and pushing the result back on the stack.

Set Index

Opcode 0x39

Operands None

Stack
Argument
1

The value

Stack
Argument
2

The index

Stack
Argument
3

The object

KASM
Mnemonic

sidx

Description
Consumes a value, an index, and an object from the stack, setting the specified
index on the object to the given value.

Branch If False

Opcode 0x3a

Operand 1 (String, Int32)

Stack
Argument
1

The boolean/value

KASM
Mnemonic

bfa

Description

Consumes one value from the stack and branches to the given destination if the
value was false. If the integer destination is provided, this represents a relative
branch. If the value is 3, this will branch 3 instructions "down", and -3 is 3
instructions up. This uses 0 == false evaluation

Jump / Unconditional Branch

Opcode 0x3b

Operand 1 (String, Int32)

Stack
Argument
1

The boolean/value

KASM
Mnemonic

jmp

Description
Unconditionally branches to the given destination. If the integer destination is
provided, this represents a relative branch. If the value is 3, this will branch 3
instructions "down", and -3 is 3 instructions up.

Add

Opcode 0x3c

Operands None

Stack
Argument 1

Value1

Stack
Argument 2

Value2

KASM
Mnemonic

add

Description
Consumes 2 values from the stack, pushing back the sum of the 2 values.
Value1 + Value2

Subtract

Opcode 0x3d

Operands None

Stack
Argument 1

Value1

Stack
Argument 2

Value2

KASM
Mnemonic

sub

Description
Consumes 2 values from the stack, pushing back the difference of the 2
values. Value2 - Value1

Multiply

Opcode 0x3e

Operands None

Stack
Argument 1

Value1

Stack
Argument 2

Value2

KASM
Mnemonic

mul

Description
Consumes 2 values from the stack, pushing back the product of the 2 values.
Value1 * Value2

Divide

Opcode 0x3f

Operands None

Stack Argument
1

Value1

Stack Argument
2

Value2

KASM
Mnemonic

div

Description
Consumes 2 values from the stack, pushing back their quotient. Value2 /
Value1

Power

Opcode 0x40

Operands None

Stack
Argument
1

Value1

Stack
Argument
2

Value2

KASM
Mnemonic

pow

Description
Consumes 2 values from the stack, pushing back the result of raising the second
value to the power of the first. Value2 ^ Value1

Compare Greater Than

Opcode 0x41

Operands None

Stack
Argument
1

Value1

Stack
Argument
2

Value2

KASM
Mnemonic

cgt

Description
Consumes 2 values from the stack, pushing back a boolean of if the second is
greater than the first. Value2 > Value1

Compare Less Than

Opcode 0x42

Operands None

Stack
Argument
1

Value1

Stack
Argument
2

Value2

KASM
Mnemonic

clt

Description
Consumes 2 values from the stack, pushing back a boolean of if the second is
less than the first. Value2 < Value1

Compare Greater Than or Equal

Opcode 0x43

Operands None

Stack
Argument
1

Value1

Stack
Argument
2

Value2

KASM
Mnemonic

cge

Description
Consumes 2 values from the stack, pushing back a boolean of if the second is
greater than or equal to the first. Value2 >= Value1

Compare Less Than or Equal

Opcode 0x44

Operands None

Stack
Argument
1

Value1

Stack
Argument
2

Value2

KASM
Mnemonic

cle

Description
Consumes 2 values from the stack, pushing back a boolean of if the second is
less than or equal to the first. Value2 <= Value1

Compare Equal

Opcode 0x45

Operands None

Stack
Argument
1

Value1

Stack
Argument
2

Value2

KASM
Mnemonic

ceq

Description
Consumes 2 values from the stack, pushing back a boolean of if the second is
equal to the first. Value2 == Value1

Compare Not Equal

Opcode 0x46

Operands None

Stack
Argument
1

Value1

Stack
Argument
2

Value2

KASM
Mnemonic

cne

Description
Consumes 2 values from the stack, pushing back a boolean of if the second is
not equal to the first. Value2 != Value1

Negate

Opcode 0x47

Operands None

Stack
Argument 1

The value

KASM
Mnemonic

neg

Description
Consumes one value from the stack, pushing back the mathematical negation
of the value (i.e. 99 becomes -99)

Convert to Boolean

Opcode 0x48

Operands None

Stack
Argument
1

The value

KASM
Mnemonic

bool

Description
Consumes a value from the stack, coercing it to a boolean and then pushing it
back. This uses the nonzero=true Boolean interpretation.

Logical Negate / Not

Opcode 0x49

Operands None

Stack
Argument
1

The value

KASM
Mnemonic

not

Description
Consumes a value from the stack, pushing back the logical not of the value. If
the value on the stack is not a BooleanValue, this will treat it as one using
nonzero=true Boolean interpretation.

Logical And

Opcode 0x4a

Operands None

Stack
Argument
1

Value1

Stack
Argument
2

Value2

KASM
Mnemonic

and

Description

Consumes 2 values from the stack, pushing back a boolean of if both values
were true. If one or more of the values on the stack are not BooleanValues, this
will attempt to treat them as Booleans using the nonzero=true Boolean
interpretation. This is not used by the KerboScript compiler, which instead uses
short-circuit logic.

Logical Or

Opcode 0x4b

Operands None

Stack
Argument
1

Value1

Stack
Argument
2

Value2

KASM
Mnemonic

or

Description

Consumes 2 values from the stack, pushing back a boolean of if either of values
were true. If one or more of the values on the stack are not BooleanValues, this
will attempt to treat them as Booleans using the nonzero=true Boolean
interpretation. This is not used by the KerboScript compiler, which instead uses
short-circuit logic.

Call Function

Opcode 0x4c

Operand 1 (String, Null) - The destination label

Operand 2 (String, Null) - The destination of the call

KASM
Mnemonic

call

Description

Calls a subroutine, leaving the result on the stack. What actually happens under
the hood depends on what type of call is happening, but the end result is always
the arguments being consumed and the result being put back. The main thing
to know is that both operands to this instruction are mutually exclusive. The
other operand can always be Null and nothing bad will happen. The destination
label is used to call user-defined functions by the function's label. The
destination (operand 2) can be any built-in functions like "print()" or "stage()". If
it is a delegate, then the operand 2 should be the string "", and the delegate
should be on the top of the stack. Either way, after the delegate or lack thereof,
the arguments to the function should be there if any, followed unconditionally
by an ArgMarker.

Return from a Function

Opcode 0x4d

Operand 1 (Int16)

KASM
Mnemonic

ret

Description

Returns from a Call instruction, popping a number (operand 1) of scope depths
off the stack as it does so. It evals the topmost thing on the stack. to remove any
local variable references and replace them with their current values, and then
performs the equivalent of a popscope, then jumps back to where the routine
was called from. It also checks to ensure that the argument stack contains the
arg bottom marker. If it does not, that proves the number of parameters
consumed did not match the number of arguments passed and it throws an
exception (to avoid stack misalignment that would happen if it tried to
continue).

Push

Opcode 0x4e

Operand 1 Any

KASM Mnemonic push

Description Pushes a constant value onto the stack.

Pop

Opcode 0x4f

Operands None

KASM Mnemonic pop

Description Pops a value off the stack, discarding it.

Duplicate

Opcode 0x50

Operands None

KASM
Mnemonic

dup

Description
Push the thing atop the stack onto the stack again so there are now two of it
atop the stack.

Swap

Opcode 0x51

Operand 1 Any

KASM Mnemonic swap

Description Swaps the order of the top 2 values on the stack.

Evaluate

Opcode 0x52

Operands None

KASM
Mnemonic

eval

Description
Replaces the topmost thing on the stack with its evaluated, fully dereferenced
version. For example, if the variable foo contains value 4, and the top of the
stack is the identifier named "$foo", then this will replace the "$foo" with a 4.

Add Trigger

Opcode 0x53

Operand 1
(bool) - If unique. True if the trigger being added should be called with an
argument that identifies this instance/entrypoint uniquely at runtime.

Operand 2 (Int32) - The interrupt priority level of the trigger

KASM
Mnemonic

addt

Description

Pops a function pointer from the stack and adds a trigger that will be called
each cycle. The argument (to the opcode, not on the stack) contains the
Interrupt Priority level of the trigger. For one trigger to interrupt another, it
needs a higher priority, else it waits until the first trigger is completed before it
will fire.

Remove Trigger

Opcode 0x54

Operands None

Stack
Argument 1

Function pointer

KASM
Mnemonic

rmvt

Description
Pops a function pointer from the stack and removes any triggers that call that
function pointer.

Wait

Opcode 0x55

Operands None

Stack
Argument 1

Time to wait in seconds

KASM
Mnemonic

wait

Description
Pops a duration in seconds from the stack and yields execution for that
amount of game time.

Get Method

Opcode 0x57

Operand 1 String, StringValue

Stack
Argument
1

The structure or identifier of the structure

KASM
Mnemonic

gmet

Description

Get Method is exactly the same thing as Get Member, and is in fact a subclass of
it. The only reason for the distinction is so that at runtime the instruction can tell
whether the getting of the member was done with method call syntax with
parentheses, like SHIP:NAME(), or non-method call syntax, like SHIP:NAME. It
needs to know whether there is an upcoming Call instruction coming next or
not, so it knows whether the delegate will get dealt with later or if it needs to
perform it now.

Store Local

Opcode 0x58

Operand 1 String, StringValue

Stack
Argument
1

The value to store

KASM
Mnemonic

stol

Description

Consumes the topmost value of the stack, storing it into a variable named in the
identifier operand of this instruction. The variable must not exist already in the
local nesting level, and it will NOT attempt to look for it in the next scoping level
up. Instead it will attempt to create the variable anew at the current local nesting
scope.

Store Global

Opcode 0x59

Operand 1 String, StringValue

Stack
Argument
1

The value to store

KASM
Mnemonic

stog

Description

Consumes the topmost value of the stack, storing it into a variable named by
the identifier operand of this instruction. The variable will always be stored at a
global scope, overwriting whatever else was there if the variable already existed.
It will ignore local scoping and never store the value in a local variable

Push Scope

Opcode 0x5a

Operand 1 (Int16) - the unique id of this scope frame

Operand 2 (Int16) - the unique id of the scope frame this scope is inside of

KASM
Mnemonic

bscp

Description

Pushes a new variable namespace scope (for example, when a "{" is encountered
in a block-scoping language like C++ or Java or C#.) From now on any local
variables created will be made in this new namespace. Has no argument stack
effect.

Pop Scope

Opcode 0x5b

Operand 1 (Int16) - the number of levels

KASM
Mnemonic

escp

Description

Pops a variable namespace scope. From now on any local variables created
within the previous scope are orphaned and gone forever ready to be garbage
collected. It is possible to give it an argument of more than 1 to pop more than
one nesting level of scope, to handle the case where you are breaking out of
more than one nested level at once. (i.e. such as might happen with a break,
return, or exit keyword).

Store Exists

Opcode 0x5c

Operand 1 String, StringValue

Stack
Argument
1

The value to store

KASM
Mnemonic

stoe

Description

Consumes the topmost value of the stack, storing it into a variable described by
identifer operand of this instruction, which must already exist as a variable
before this is executed. Unlike Store, Store Exist will NOT create the variable if it
does not already exist. Instead it will cause an error. (It corresponds to
KerboScript's @LAZYGLOBAL OFF directive)

Push Delegate

Opcode 0x5d

Operand 1 (Byte, Int16, Int32)

Operand 2 (Bool) - If it should be captured as a closure or not.

KASM
Mnemonic

phdl

Description
Pushes a delegate object onto the stack, optionally capturing a closure. What it
means to capture as a closure means that it will store a reference to how the
variable scopes are when it was executed.

Branch True

Opcode 0x5e

Operand 1 (String, Int32)

Stack
Argument
1

The boolean/value

KASM
Mnemonic

btr

Description

Consumes one value from the stack and branches to the given destination if the
value was true. If the integer destination is provided, this represents a relative
branch. If the value is 3, this will branch 3 instructions "down", and -3 is 3
instructions up. This uses 0 == false evaluation

Variable Exists

Opcode 0x5f

Operands None

Stack
Argument
1

The identifier

KASM
Mnemonic

exst

Description

Tests if the identifier atop the stack is an identifier that exists in the system and
is accessible in scope at the moment. If the identifier doesn't exist, or if it does
but it's out of scope right now, then it results in a FALSE, else it results in a TRUE.
The result is pushed onto the stack for reading.

Argument Bottom

Opcode 0x60

Operands None

Stack
Argument
1

Any

KASM
Mnemonic

argb

Description

Asserts that the next thing on the stack is the argument bottom marker. If it's
not the argument bottom, it throws an error. This does NOT pop the value from
the stack - it merely peeks at the stack top. The actual popping of the arg
bottom value comes later when doing a return, or a program bottom exit.

Test Argument Bottom

Opcode 0x61

Operands None

Stack
Argument
1

Any

KASM
Mnemonic

targ

Description
Tests whether or not the next thing on the stack is the argument bottom marker.
It pushes a true on top if it is, or false if it is not. In either case it does NOT
consume the arg bottom marker, but just peeks for it.

Test Trigger Cancelled

Opcode 0x62

Operands None

KASM
Mnemonic

tcan

Description

ests whether or not the current subroutine context on the stack that is being
executed right now is one that has been flagged as cancelled by someone
having called SubroutineContext.Cancel(). This pushes a True or a False on the
stack to provide the answer. This should be the first thing done by triggers that
wish to be cancel-able by other triggers. (For example if someone unlocks
steering in one trigger, the steering function should not be run after that even if
it had been queued up at the start of this physics tick) If you are a trigger that
wishes to be cancel-able in this fashion, your trigger body should start by first
calling this to see if you have been cancelled, and if it returns true, then you
should return early without doing the rest of your body.

Push Relocate Later

Opcode 0xce

Operand 1 (String)

KASM
Mnemonic

prl

Description

An "ugly placeholder" to handle the fact that sometimes the KerboScript
compiler creates an Push instruction that uses relocatable DestinationLabels as a
temporary place to store their arguments in the list until they get added to the
program. For more information, see the kOS code on GitHub. Not really used
much.

Push Delegate Relocate Later

Opcode 0xcd

Operand 1 (String)

Operand 2 (Bool) - Should capture as a closure

KASM
Mnemonic

pdrl

Description

This serves the same purpose as Push Relocate Later instruction, except it's for
use with UserDelegates instead of raw integer IP calls. What this means in
simpler terms is that this instruction is used to push a function as a delegate
onto the stack in the proper way that kOS will make it do what you think it will
do. This will turn the function's label into a real location after it is loaded.

Label Reset

Opcode 0xf0

Operand 1 (String)

KASM
Mnemonic

lbrt

Description

Most instructions' Label fields are just string-ified numbers for their index
position. But sometimes, when they are the entry point for a function call (from
a lock expression), the label is an identifier string. When this is the case, then the
mere position of the opcode within the program is not enough to store the
label. Therefore, for import/export to a KSM file, in this case the numeric label
needs to be stored. It is done by creating a dummy instruction that is just a no-
op instruction intended to be removed when the program is actually loaded into
memory and run. It exists purely to store, as an argument, the label of the next
opcode to follow it. See the KSM File Docs for more information.

