KSM File Format Documentation

e Version 1.0.1

o Unofficial, written as of July 2021, Kerbal Operating System release version 1.3.2.0

Contents

e Preface
e About KSM

e Terminology

1. Overview

2. Argument Section
o Arguments

3. Code Sections
o Instructions

4. Debug Section
5. Example
6. Notes

Preface

This document is intended to provide anyone with an interest in how KSM files are structured with a
thorough explanation of exactly how and why each component of the file is there. A document like
this one exists currently within the kOS GitHub repository, however it is outdated and does not
explain specific key details. The kOS document also is meant for developers of kOS who are already
familiar with the internal code that handles KSM, while this and accompanying documents are
designed to be able to be used by someone who is not very familiar with how kOS works internally
at all.

There has been an interest for several years to create a new programming language for kOS, and
many would benefit from being a compiled language rather than a transpiled one. This document
seeks to be able to provide developers with a strong starting point to be able to begin that
undertaking of their own.

If any parts of this document are outdated or incorrect, please notify us by creating a GitHub issue.

https://github.com/KSP-KOS/KOS/blob/develop/src/kOS.Safe/Compilation/CompiledObject-doc.md

There has been a tool created and maintained called KDump, which is the equivalent to KSM and
KO files as objdump or readelf are to ELF files.

About KSM

The KerboScript Machine Code file format was developed to overcome the problem of bloated
code files filled with comments and repeated data. This data is essential to good programming
practices, but is not needed for code execution. This KSM files were created.

KSM files are collections of compiled program data and instructions that is then compressed in
GZIP format to further reduce file size.

Terminology

KSM - KerboScript Machine Code
Instruction - One opcode followed by its operands (look up CPU instructions on Wikipedia)
Operand - An index into the argument section that stores the data this instruction references

Overview

As mentioned above, KSM files are compressed using GZIP compression. A file stored using GZIP
can be identified by the first 4 bytes of the file, also known as the "file magic": exif ex8b oxes
ox00 , or in decimal 31, 139, 8, ©.

Certain GZIP compressors will not output this specific file magic, and instead it will be slightly
different. No manual GZIP compression tool like 7Zip has been found to create a file that kOS will
accept. Nor have the settings that determine this been found.

KSM files can be decompressed using these tools though, and once extracted, can be hexdumped
to find the actual contents of the file as described here.

Once decompressed, the file will have the following overall structure:

KSM file magic
Argument Section

Code Section(s)

Debug Section

https://github.com/newcomb-luke/KDump/tree/main

KSM files have their own file magic that distinguishes them from other files: exéb @xe3 ex58 ox4s ,
or in decimal 107, 3, 88, 69.

If converted to ASCII, this becomes: k XE, with the second byte having a value of 3 and not being
ASCII text, just being a 3, therefore: k3XE, or kEXE (Kerbal Executable).

This file magic is directly followed by the argument section

Argument Section

The purpose of the argument section is to store all of the constant values that are used by each
instruction in the program. This is not usually the way data like this is stored in real-life file formats
like ELF, but kOS is not a real-life computer and can do what it wants. The main reason for this is to
reduce duplicated values used by instructions, as kOS storage space is much more precious than
storage space on your computer.

The argument section has a header, which marks the start of the section and provides necessary
information to continue reading the file. The argument section header begins with two ASCII
characters:

%A

The first argument after the "%A" is a byte that stores the size of an instruction operand that is
required to index an argument in the argument section. If this number is 1, then that means that
only 1 byte is required to store the maximum index of an operand to an instruction, so the
maxmimum index is 255. If the number is 2, then 2 bytes are required to store an index into the
argument section. Because this is the width of an index, this means that this is also the width of
each instruction operand in the entire file.

After the %A and the index size byte, follow the arguments.

Arguments

Each argument begins with the argument type. The argument type is 1 byte wide. kOS currently has
13 argument types:

Name Byte Description

Null 0 Represents a null value just like in other languages.
Represents true or false. Used for arguments to kOS system
Boolean 1
calls.
Byte 2 Represents a byte. Used for a few kOS system calls.
Int16 3 16 bit integer.
Int32 4 32 bit integer.
Float 5 32 bit floating point number.
Double 6 64 bit floating point number.
String 7 String.
Argument Marker 8 Used to mark the end of function arguments.
Scalar Integer - o
9 32 bit integer. All KerboScript integers.
Value
Scalar Double
10 Double-precision floating point. All KerboScript floats.
Value
Boolean Value 11 Same as above, but a boolean.
String Value 12 Same as above, but a string.

In kOS all integer/floating point arguments are stored in little-endian format.

The values of Null and Argument Marker both have 0 size, they are completely defined by their
type.

Boolean, Byte, and Boolean Value all have a size of 1 byte, not counting the argument type.
Int16 has a size of 2 bytes not counting the argument type.
Int32, Scalar Integer, and Float value are 4 bytes in size.

Double and Scalar Double Value are 8 bytes in size.

String and String Value are different than other kOS values. The format they are stored in is the
same. The next byte after the argument type is a value that stores the length of the string in
characters. After that comes the string's value.

The next argument starts right after the last one has ended. A program knows to stop reading the

argument section when the next argument's type instead is read as the percent sign character: '%'.
This character denotes the start of a code section.

Code Sections

A code section does what it says on the tin, it holds the actual code that is executed when you run a
program inside of kOS. The first code section always encountered is a function code section,
denoted in the file as the characters "%F".

There are 3 types of code sections, function sections, initialization sections, and main sections.

There can be multiple function sections in one KSM file, and they each store one user-defined
function's code.

There can be multiple initialization sections defined in one file as well, and they are used to set
default kOS settings before your script starts up or things kOS needs to do strange magic things
with LOCKs for example.

Main sections can only appear once per KSM file, and represent the code that will be run when the
program starts executing. When kOS loads your program, the entry point is the first instruction in
the main section of the loaded file.

Initialization sections and main sections are denoted in the file as "%I" and "%M" respectively.

kOS's KerboScript compiler generally creates KSM files in a non-intuitive way. Each function section
does not stand on it's own, but is always followed by initialization and main sections, even if
another function is the next code in the file. To be more clear, this means that after each function
section can be empty initialization and main sections, as shown in a pseudo-hex-dump:

%F(insert some hex codes of instructions here)%I%M%F(more...)

It is possible that instead of being empty, the initialization section is also populated with code, so
don't rely on this pattern.

The main section will(should) always be last.

The best way to parse code sections are to keep reading until a % sign is reached, end that code
section and start another. Check if each section is empty, if it is, ignore it ever existed. (Unless
parsing the debug section, but that will be discussed later)

Instructions

Directly after the code section header (the percent sign thing), starts the list of instructions.
Instructions in KSM are variable length. The first byte of the instruction is the instruction's opcode.
A full list of instruction opcodes is provided in these docs in another file, however a few will be used
for examples.

Three instructions will be used as examples:

Instruction Opcode Value
Add Ox3c
Push Ox4e
Bcsp (Begin scope) Ox5a

Some instructions take operands, others do not. One example of an instruction that does not take
any operands is the Add instruction.

Here is an example of a function section that only contains a complete Add intruction:

0x25 0x46 Ox3c

ANN ANN N

The Add instruction is always the same size: only 1 byte. You may be asking what the add
instruction does, how does it add two numbers if none are provided? The answer is that kOS is
what is called a stack machine. If you understand what a stack machine is, the next example
instruction will certainly strike you as important, the Push instruction.

An example of the Push instruction in binary form alone is:

https://en.wikipedia.org/wiki/Stack_machine

Ox4e 0x02

ANN N

Push 2?

This instruction takes one operand, and in this case the value of that operand is 5. First of all, the
reason that this operand's size is only 1 byte is because in this example, we are assuming that
argument index width from the Argument Section above, is 1. If that argument index width were 2,
this Push instruction would be:

Ox4e 0x0005

Note that the operand, if multiple bytes, is in big-endian format for some reason.

Now for the value of the operand. The value of any instruction's operand does not represent the
value that will be used, it represents a byte index into the file's Argument Section of the value. A key
thing to note is that the Argument Section's header is included in the index. To be clear, that means
that because the Argument Section's header is 3 bytes long (%A then number), the first index an
argument can have is 3, and that refers to the first argument in the section.

Finally, if an instruction has more than one operand, they are simply added one after another.
Currently as of writing this documentation, kOS only has up to 2 operands per instruction.

An example of the Bscp instruction which takes two arguments is shown below using an index size
of 1

Ox5a Ox03 0x06

The only way to know the size an instruction will be when reading it is to keep track of how many
operands each instruction takes. As stated above a file documenting this is provided alongside this
one.

Because an instruction's opcode value is not allowed to be 0x25 which is the percent sign in ASCII,
the end of the current code section can be detected by checking if the next byte is 0x25, or '%'.

Debug Section

Each KSM file contains a debug section. This section allows kOS to find out what source code line
an error occurred on without having the code available.

The Debug Section, like the other sections starts with a header that begins with %: "%D".

The Debug Section also has another part of its header, a single byte representing the size of an
index into the object file. 1 for 1 byte, 2 for 2 bytes, etc.

The Debug Section consists of several Debug Entries that map a line number to one or more
Instructions that make up that source line.

A Debug Entry contains the following data:

e Source code line number, a 16-bit signed integer.
e The number of Instruction ranges

e 1 or more Instruction ranges that represent the instructions that make up the source line.

An example would be a debug entry like this:

Line Number Number of Ranges Range 1

1 1 2-7

This means that the Instructions within the range 2 through 7 make up line 1, and nothing else.

Or like this for a more complicated source line:

Line Number Number of Ranges Range 1 Range 2
3 2 7-8 10 - 11

This means that the Instructions within range 7 to 8, and 10 to 11, but not byte 9 (for whatever
reason) make up line 3 of the source.

The ranges are the Debug Entry fields that are affected by that index width in the Debug Section
header. So if these two examples were encoded into hexadecimal, the first one having an index
width of 1, and the second having an index width of 2:

Ox01 Ox00 ©Ox01 0©0x02 0x07

ANNNNANNNNN N ANNANNANAN

Line 1 1 range 2 -7

OX03 Ox00 0x02 0Ox0700 Ox0800 Ox0ak® OxOboO

ANNNNNNNN N ANNANNNNNN ANNNNANNN

Line 3 2 ranges 7 - 8 10 - 11

The ranges are expressed as byte indexes into the KSM file. The index 0 begins at the first byte after
the Argument Section. And continues on until the Debug Section is reached. That means that all
bytes in the file from the Argument Section up to that point are counted, including code section
headers like %F and %I|%M. So the first valid Instruction index in the file is actually index 2, because
it will have come after one code section header. The debug section ends when the end of the file is
reached.

Example

Here is the full hexdump of the test.ksm file provided in the kerbalobjects.rs repository:

00000000 6b @3 58 45 25 41 01 07 07 70 72 69 6e 74 28 29 |k.XE%A...print() |
00000010 ©7 00 09 02 00 00 00 08 ©7 05 40 30 30 30 31 03 |.......... @0001. |
00000020 ©1 00 03 00 00 25 46 25 49 25 4d f0 14 5a 1b le |..... %FBIIM. .Z. . |
00000030 60 4e 13 4e @e 4e Qe 3c 4c Oc 03 4f 5b 1b 25 44 | N.N.N.<L..O[.%D|
00000040 01 01 00 01 06 18 [...... |

00000046

As you can see the first 4 bytes of the file are what are expected: 6b 03 58 45, or as you can see on
the left side (mostly) converted to text: k.XE . The next 2 bytes are the expected %A, followed by a
byte with the value of 1, meaning the Argument Section can be indexed using only 1 byte, or more
specifically, that Instruction operands will be 1 byte wide.

The next byte starts the Argument Section data, and is a 7. Going back to the list of kOS value
types, that is a String. This means that the next byte stores how long the string is, 7 bytes. Then
after that follows the string: 70 72 69 6e 74 28 29. Or more readable to us on the right hand side:
print() . "print()" is the string used to call the built-in kOS print function.

Using the kOS value reading logic, we get the following arguments in total:

https://github.com/newcomb-luke/kerbalobjects.rs

Type Value Index

String "print()" 0x03
String 0x0c
Scalar Int Value 2 Ox0e
ArgMarker n/a 0x13
String "@0001" 0x14
Int16 1 Ox1b
Int16 0 Ox1e

Then we hit another %-sign and read: %F%I|%M. This means that there is an empty function section,
empty initialization section, and a main section. Then follow the Instructions.

The first byte in the Main Code Section is 0xf0. This is the opcode for the Label Reset Instruction.
This Instruction takes 1 operand, and that operand is Ox14. Checking the kOS value at Argument
Section index 0x14, we get:

lbrt @@0e1

This instruction resets the internal kOS label and marks the first Instruction as the first in the
program, and tells kOS where to start running the program.

The next byte after that is 0x5a, which is the opcode for the Begin Scope Instruction. This
Instruction takes two operands, and the next two bytes are Ox1b and Ox1e. These indexes
correspond to the values 1 and 0 respectively, so the instruction encoded here is:

bscp 1, ©

Then the rest of the Instructions are read this way:

Instruction Operand(s)

argb

push ArgMarker
push 2

push 2

add

call ", "print()"
pop

escp 1

Wow! Reading through that, this program adds 2 + 2 and prints the result! Sounds like a useful
program.

At the end of that, the Debug Section is reached. %D is read, and the next byte after thatis a 1,
meaning that range indexes will only be 1 byte wide.

In this case there is only one Debug Entry. The next two bytes are 0x01 and 0x00, which encodes
the line number of 1. Then the next byte is 0x01, meaning that there is only 1 range. That range is
0x06 to 0x18, or indexes 6 to 24. If you do the math, you will find out that bytes 6 through 24 mean
all of the Code Sections, from the Argument Section to the Debug Section, or the entire code of the
file. This encodes that all of the code in this file is from source line 1.

The KerboScript that this KSM File could have been created by compiling could be:

PRINT 2 + 2.

That is quite a large file to store such a simple program. But when the source code starts becoming
larger, the cost savings of using KSM files to store it rockets (pun intended), especially when things
like comments come into play.

This concludes the description of the kOS KSM file format.

Notes

The best way to get hands-on experience with KSM files is to run the kOS compiler by running
COMPILE (your file).ks. and looking at the output.

