#ifndef KISSFFT_I32_CLASS_HH #define KISSFFT_I32_CLASS_HH #include #include #include // TODO1: substitute complex (behaviour not defined for nonfloats), should be faster // TODO2: use std:: namespace // TODO3: make unittests for all ffts (c, cpp, i32) template struct complex_s { DType real; DType imag; }; class kissfft_i32 { private: using scalar_type = int32_t; using cpx_type = complex; scalar_type _scale_factor; std::size_t _nfft; bool _inverse; std::vector _twiddles; std::vector _stageRadix; std::vector _stageRemainder; public: // scale_factor: upscale twiddle-factors otherwise they lie between 0..1 (out of range for integer) --> fixed point math kissfft_i32(const std::size_t nfft, const bool inverse, const double scale_factor = 1024.0) : _scale_factor(scalar_type(scale_factor)), _nfft(nfft), _inverse(inverse) { // fill twiddle factors _twiddles.resize(_nfft); const double phinc = (_inverse ? 2 : -2) * acos(-1.0) / _nfft; for (std::size_t i = 0; i < _nfft; ++i) { _twiddles[i] = scale_factor * exp(complex(0, i * phinc)); } //factorize //start factoring out 4's, then 2's, then 3,5,7,9,... std::size_t n = _nfft; std::size_t p = 4; do { while (n % p) { switch (p) { case 4: p = 2; break; case 2: p = 3; break; default: p += 2; break; } if (p * p > n) p = n;// no more factors } n /= p; _stageRadix.push_back(p); _stageRemainder.push_back(n); } while (n > 1); } /// Calculates the complex Discrete Fourier Transform. /// /// The size of the passed arrays must be passed in the constructor. /// The sum of the squares of the absolute values in the @c dst /// array will be @c N times the sum of the squares of the absolute /// values in the @c src array, where @c N is the size of the array. /// In other words, the l_2 norm of the resulting array will be /// @c sqrt(N) times as big as the l_2 norm of the input array. /// This is also the case when the inverse flag is set in the /// constructor. Hence when applying the same transform twice, but with /// the inverse flag changed the second time, then the result will /// be equal to the original input times @c N. void transform(const cpx_type * FSrc, cpx_type * FDst, const std::size_t stage = 0, const std::size_t fstride = 1, const std::size_t in_stride = 1) const { const std::size_t p = _stageRadix[stage]; const std::size_t m = _stageRemainder[stage]; cpx_type *const Fout_beg = FDst; cpx_type *const Fout_end = FDst + p * m; if (m == 1) { do { *FDst = *FSrc; FSrc += fstride * in_stride; } while (++FDst != Fout_end); } else { do { // recursive call: // DFT of size m*p performed by doing // p instances of smaller DFTs of size m, // each one takes a decimated version of the input transform(FSrc, FDst, stage + 1, fstride * p, in_stride); FSrc += fstride * in_stride; } while ((FDst += m) != Fout_end); } FDst = Fout_beg; // recombine the p smaller DFTs switch (p) { case 2: kf_bfly2(FDst, fstride, m); break; case 3: kf_bfly3(FDst, fstride, m); break; case 4: kf_bfly4(FDst, fstride, m); break; case 5: kf_bfly5(FDst, fstride, m); break; default: kf_bfly_generic(FDst, fstride, m, p); break; } } private: void kf_bfly2(cpx_type *const Fout, const size_t fstride, const std::size_t m) const { for (std::size_t k = 0; k < m; ++k) { const cpx_type t = (Fout[m + k] * _twiddles[k * fstride]) / _scale_factor; Fout[m + k] = Fout[k] - t; Fout[k] += t; } } void kf_bfly3(cpx_type *Fout, const std::size_t fstride, const std::size_t m) const { std::size_t k = m; const std::size_t m2 = 2 * m; const cpx_type *tw1, *tw2; cpx_type scratch[5]; const cpx_type epi3 = _twiddles[fstride * m]; tw1 = tw2 = &_twiddles[0]; do { scratch[1] = (Fout[m] * *tw1) / _scale_factor; scratch[2] = (Fout[m2] * *tw2) / _scale_factor; scratch[3] = scratch[1] + scratch[2]; scratch[0] = scratch[1] - scratch[2]; tw1 += fstride; tw2 += fstride * 2; Fout[m] = Fout[0] - (scratch[3] / 2); scratch[0] *= epi3.imag(); scratch[0] /= _scale_factor; Fout[0] += scratch[3]; Fout[m2] = cpx_type(Fout[m].real() + scratch[0].imag(), Fout[m].imag() - scratch[0].real()); Fout[m] += cpx_type(-scratch[0].imag(), scratch[0].real()); ++Fout; } while (--k); } void kf_bfly4(cpx_type *const Fout, const std::size_t fstride, const std::size_t m) const { cpx_type scratch[7]; const scalar_type negative_if_inverse = _inverse ? -1 : +1; for (std::size_t k = 0; k < m; ++k) { scratch[0] = (Fout[k + m] * _twiddles[k * fstride]) / _scale_factor; scratch[1] = (Fout[k + 2 * m] * _twiddles[k * fstride * 2]) / _scale_factor; scratch[2] = (Fout[k + 3 * m] * _twiddles[k * fstride * 3]) / _scale_factor; scratch[5] = Fout[k] - scratch[1]; Fout[k] += scratch[1]; scratch[3] = scratch[0] + scratch[2]; scratch[4] = scratch[0] - scratch[2]; scratch[4] = cpx_type(scratch[4].imag() * negative_if_inverse, -scratch[4].real() * negative_if_inverse); Fout[k + 2 * m] = Fout[k] - scratch[3]; Fout[k] += scratch[3]; Fout[k + m] = scratch[5] + scratch[4]; Fout[k + 3 * m] = scratch[5] - scratch[4]; } } void kf_bfly5(cpx_type *const Fout, const std::size_t fstride, const std::size_t m) const { cpx_type *Fout0, *Fout1, *Fout2, *Fout3, *Fout4; cpx_type scratch[13]; const cpx_type ya = _twiddles[fstride * m]; const cpx_type yb = _twiddles[fstride * 2 * m]; Fout0 = Fout; Fout1 = Fout0 + m; Fout2 = Fout0 + 2 * m; Fout3 = Fout0 + 3 * m; Fout4 = Fout0 + 4 * m; for (std::size_t u = 0; u < m; ++u) { scratch[0] = *Fout0; scratch[1] = (*Fout1 * _twiddles[u * fstride]) / _scale_factor; scratch[2] = (*Fout2 * _twiddles[2 * u * fstride]) / _scale_factor; scratch[3] = (*Fout3 * _twiddles[3 * u * fstride]) / _scale_factor; scratch[4] = (*Fout4 * _twiddles[4 * u * fstride]) / _scale_factor; scratch[7] = scratch[1] + scratch[4]; scratch[10] = scratch[1] - scratch[4]; scratch[8] = scratch[2] + scratch[3]; scratch[9] = scratch[2] - scratch[3]; *Fout0 += scratch[7]; *Fout0 += scratch[8]; scratch[5] = scratch[0] + (cpx_type( scratch[7].real() * ya.real() + scratch[8].real() * yb.real(), scratch[7].imag() * ya.real() + scratch[8].imag() * yb.real() ) / _scale_factor); scratch[6] = cpx_type( scratch[10].imag() * ya.imag() + scratch[9].imag() * yb.imag(), -scratch[10].real() * ya.imag() - scratch[9].real() * yb.imag() ) / _scale_factor; *Fout1 = scratch[5] - scratch[6]; *Fout4 = scratch[5] + scratch[6]; scratch[11] = scratch[0] + (cpx_type( scratch[7].real() * yb.real() + scratch[8].real() * ya.real(), scratch[7].imag() * yb.real() + scratch[8].imag() * ya.real() ) / _scale_factor); scratch[12] = cpx_type( -scratch[10].imag() * yb.imag() + scratch[9].imag() * ya.imag(), scratch[10].real() * yb.imag() - scratch[9].real() * ya.imag() ) / _scale_factor; *Fout2 = scratch[11] + scratch[12]; *Fout3 = scratch[11] - scratch[12]; ++Fout0; ++Fout1; ++Fout2; ++Fout3; ++Fout4; } } /* perform the butterfly for one stage of a mixed radix FFT */ void kf_bfly_generic(cpx_type * const Fout, const size_t fstride, const std::size_t m, const std::size_t p) const { const cpx_type *twiddles = &_twiddles[0]; cpx_type scratchbuf[p]; for (std::size_t u = 0; u < m; ++u) { std::size_t k = u; for (std::size_t q1 = 0; q1 < p; ++q1) { scratchbuf[q1] = Fout[k]; k += m; } k = u; for (std::size_t q1 = 0; q1 < p; ++q1) { std::size_t twidx = 0; Fout[k] = scratchbuf[0]; for (std::size_t q = 1; q < p; ++q) { twidx += fstride * k; if (twidx >= _nfft) twidx -= _nfft; Fout[k] += (scratchbuf[q] * twiddles[twidx]) / _scale_factor; } k += m; } } } }; #endif