
Kerbal Operating System Instructions Documen-
tation

• Version 1.0
• Unofficial, written as of December 2021, Kerbal Operating System release

version 1.3.2.0

Contents
• Preface
• About kOS instructions
• Terminology

1. End of File
2. End of Program
3. No Operation
4. Store
5. Unset
6. Get Member
7. Set Member
8. Get Index
9. Set Index

10. Branch If False
11. Jump / Unconditional Branch
12. Add
13. Subtract
14. Multiply
15. Divide
16. Power
17. Compare Greater Than
18. Compare Less Than
19. Compare Greater Than or Equal
20. Compare Less Than or Equal
21. Compare Equal
22. Compare Not Equal
23. Negate
24. Convert to Boolean
25. Logical Negate / Not
26. Logical And
27. Logical Or
28. Call Function
29. Return from a Function
30. Push
31. Pop
32. Duplicate
33. Swap

1

34. Evaluate
35. Add Trigger
36. Remove Trigger
37. Wait
38. Get Method
39. Store Local
40. Store Global
41. Push Scope
42. Pop Scope
43. Store Exists
44. Push Delegate
45. Branch True
46. Variable Exists
47. Argument Bottom
48. Test Argument Bottom
49. Test Trigger Cancelled
50. Push Relocate Later
51. Push Delegate Relocate Later
52. Label Reset

Preface
This document is intended to provide a comprehensive list of all current Kerbal
Operating System opcodes/instructions and their functions. This guide builds
off of many ideas that are introduced in the KSM File Docs. That is the format
that these instructions are encoded in.

If any parts of this document are outdated or incorrect, please notify us by
creating a GitHub issue.

All of the instructions listed in this document are sorted by the value of the
instruction’s opcode.

In order to understand the types of operands that each instruction takes, also
see the KSM File Docs linked above.

About kOS instructions
As stated in the KSM docs, the kOS CPU is a stack-based computer emulated
inside of Kerbal Space Program. Each instruction begins with an Opcode, which
is basically just a number that tells kOS which instruction we want to run. Each
instruction in this list will have the opcode. Opcodes are written as hexadecimal.

Because stacks work like they do, the first thing put on the stack is the last
thing to come out. When stack arguments are listed on instructions, they are
listed in the order they are popped off of the stack.

2

./KSM-file-format.md
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Hexadecimal

Terminology
Instruction - the basic unit of a kOS program
Opcode - the code which identifies instructions
Operand - parameters to the instruction that it goes with
Stack argument - an argument to an instruction stored on the stack

Instructions
End of File

Opcode 0x31
Operands None
KASM Mnemonic eof
Description This instruction tells kOS

that the current program’s
file has ended. kOS seems to
expect this before an End of
Program instruction. This
instruction only causes the
kOS CPU to stop executing
and abort its context.

End of Program

Opcode 0x32
Operands None
KASM Mnemonic eop
Description This instruction tells kOS

that the current program
has ended. Which aborts the
current program. This is
used to return back to the
interpreter context once a
program is finished
executing. This can be
explicitly written to end the
program early.

No Operation

Opcode 0x33
Operands None
KASM Mnemonic nop

3

Description Performs no operation: it
does nothing. This can be
used as a non-efficient way
to try to delay the CPU, or
just as a place to put a label
in KASM, but it is largely
unused.

Store

Opcode 0x34
Operand 1 String, StringValue
Stack Argument 1 The value to store
KASM Mnemonic sto
Description Consumes the topmost value

of the stack, storing it into a
variable named by the
operand of this instruction.
This will try to store the
value in the lowest scope it
can find the identifier in. If
it isn’t found in any outer
scope, this creates a new
global variable.

Unset

Opcode 0x35
Operands None
Stack Argument 1 The identifier of the variable
KASM Mnemonic uns
Description Consumes the topmost value

of the stack as an identifier,
unsetting the variable
referenced by this identifier.
This will remove the variable
referenced by this identifier
in the innermost scope that
it is set in.

Get Member

4

Opcode 0x36
Operand 1 String, StringValue
Stack Argument 1 The structure or identifier of

the structure
KASM Mnemonic gmb
Description Consumes the topmost value

of the stack, getting the
suffix of it specified by the
identifier operand and
putting that value back on
the stack. If this suffix refers
to a method suffix, it will be
called with no arguments.

Set Member

Opcode 0x37
Operand 1 String, StringValue
Stack Argument 1 The structure or identifier of

the structure
KASM Mnemonic smb
Description Consumes a value and a

destination object from the
stack, setting the objects
suffix specified by the
identifier operand to the
popped value.

Get Index

Opcode 0x38
Operands None
Stack Argument 1 The index
Stack Argument 2 The collection
KASM Mnemonic gidx
Description Consumes an index and an

target object from the stack,
getting the indexed value
from the object and pushing
the result back on the stack.

Set Index

5

Opcode 0x39
Operands None
Stack Argument 1 The value
Stack Argument 2 The index
Stack Argument 3 The object
KASM Mnemonic sidx
Description Consumes a value, an index,

and an object from the
stack, setting the specified
index on the object to the
given value.

Branch If False

Opcode 0x3a
Operand 1 (String, Int32)
Stack Argument 1 The boolean/value
KASM Mnemonic bfa
Description Consumes one value from

the stack and branches to
the given destination if the
value was false. If the
integer destination is
provided, this represents a
relative branch. If the value
is 3, this will branch 3
instructions “down”, and -3
is 3 instructions up. This
uses 0 == false evaluation

Jump / Unconditional Branch

Opcode 0x3b
Operand 1 (String, Int32)
Stack Argument 1 The boolean/value
KASM Mnemonic jmp

6

Description Unconditionally branches to
the given destination. If the
integer destination is
provided, this represents a
relative branch. If the value
is 3, this will branch 3
instructions “down”, and -3
is 3 instructions up.

Add

Opcode 0x3c
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic add
Description Consumes 2 values from the

stack, pushing back the sum
of the 2 values. Value1 +
Value2

Subtract

Opcode 0x3d
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic sub
Description Consumes 2 values from the

stack, pushing back the
difference of the 2 values.
Value2 - Value1

Multiply

Opcode 0x3e
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic mul

7

Description Consumes 2 values from the
stack, pushing back the
product of the 2 values.
Value1 * Value2

Divide

Opcode 0x3f
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic div
Description Consumes 2 values from the

stack, pushing back their
quotient. Value2 / Value1

Power

Opcode 0x40
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic pow
Description Consumes 2 values from the

stack, pushing back the
result of raising the second
value to the power of the
first. Value2 ˆ Value1

Compare Greater Than

Opcode 0x41
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic cgt
Description Consumes 2 values from the

stack, pushing back a
boolean of if the second is
greater than the first.
Value2 > Value1

8

Compare Less Than

Opcode 0x42
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic clt
Description Consumes 2 values from the

stack, pushing back a
boolean of if the second is
less than the first. Value2 <
Value1

Compare Greater Than or Equal

Opcode 0x43
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic cge
Description Consumes 2 values from the

stack, pushing back a
boolean of if the second is
greater than or equal to the
first. Value2 >= Value1

Compare Less Than or Equal

Opcode 0x44
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic cle
Description Consumes 2 values from the

stack, pushing back a
boolean of if the second is
less than or equal to the
first. Value2 <= Value1

Compare Equal

9

Opcode 0x45
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic ceq
Description Consumes 2 values from the

stack, pushing back a
boolean of if the second is
equal to the first. Value2
== Value1

Compare Not Equal

Opcode 0x46
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic cne
Description Consumes 2 values from the

stack, pushing back a
boolean of if the second is
not equal to the first.
Value2 != Value1

Negate

Opcode 0x47
Operands None
Stack Argument 1 The value
KASM Mnemonic neg
Description Consumes one value from

the stack, pushing back the
mathematical negation of
the value (i.e. 99 becomes
-99)

Convert to Boolean

Opcode 0x48
Operands None
Stack Argument 1 The value

10

KASM Mnemonic bool
Description Consumes a value from the

stack, coercing it to a
boolean and then pushing it
back. This uses the
nonzero=true Boolean
interpretation.

Logical Negate / Not

Opcode 0x49
Operands None
Stack Argument 1 The value
KASM Mnemonic not
Description Consumes a value from the

stack, pushing back the
logical not of the value. If
the value on the stack is not
a BooleanValue, this will
treat it as one using
nonzero=true Boolean
interpretation.

Logical And

Opcode 0x4a
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic and

11

Description Consumes 2 values from the
stack, pushing back a
boolean of if both values
were true. If one or more of
the values on the stack are
not BooleanValues, this will
attempt to treat them as
Booleans using the
nonzero=true Boolean
interpretation. This is not
used by the KerboScript
compiler, which instead uses
short-circuit logic.

Logical Or

Opcode 0x4b
Operands None
Stack Argument 1 Value1
Stack Argument 2 Value2
KASM Mnemonic or
Description Consumes 2 values from the

stack, pushing back a
boolean of if either of values
were true. If one or more of
the values on the stack are
not BooleanValues, this will
attempt to treat them as
Booleans using the
nonzero=true Boolean
interpretation. This is not
used by the KerboScript
compiler, which instead uses
short-circuit logic.

Call Function

Opcode 0x4c
Operand 1 (String, Null) - The

destination label
Operand 2 (String, Null) - The

destination of the call
KASM Mnemonic call

12

Description Calls a subroutine, leaving
the result on the stack.
What actually happens
under the hood depends on
what type of call is
happening, but the end
result is always the
arguments being consumed
and the result being put
back. The main thing to
know is that both operands
to this instruction are
mutually exclusive. The
other operand can always be
Null and nothing bad will
happen. The destination
label is used to call
user-defined functions by the
function’s label. The
destination (operand 2) can
be any built-in functions like
“print()” or “stage()”. If it is
a delegate, then the operand
2 should be the string “”,
and the delegate should be
on the top of the stack.
Either way, after the
delegate or lack thereof, the
arguments to the function
should be there if any,
followed unconditionally by
an ArgMarker.

Return from a Function

Opcode 0x4d
Operand 1 (Int16)
KASM Mnemonic ret

13

Description Returns from a Call
instruction, popping a
number (operand 1) of scope
depths off the stack as it
does so. It evals the topmost
thing on the stack. to
remove any local variable
references and replace them
with their current values,
and then performs the
equivalent of a popscope,
then jumps back to where
the routine was called from.
It also checks to ensure that
the argument stack contains
the arg bottom marker. If it
does not, that proves the
number of parameters
consumed did not match the
number of arguments passed
and it throws an exception
(to avoid stack misalignment
that would happen if it tried
to continue).

Push

Opcode 0x4e
Operand 1 Any
KASM Mnemonic push
Description Pushes a constant value onto the stack.

Pop

Opcode 0x4f
Operands None
KASM Mnemonic pop
Description Pops a value off the stack, discarding it.

Duplicate

14

Opcode 0x50
Operands None
KASM Mnemonic dup
Description Push the thing atop the

stack onto the stack again so
there are now two of it atop
the stack.

Swap

Opcode 0x51
Operand 1 Any
KASM Mnemonic swap
Description Swaps the order of the top 2 values on the stack.

Evaluate

Opcode 0x52
Operands None
KASM Mnemonic eval
Description Replaces the topmost thing

on the stack with its
evaluated, fully dereferenced
version. For example, if the
variable foo contains value 4,
and the top of the stack is
the identifier named “$foo”,
then this will replace the
“$foo” with a 4.

Add Trigger

Opcode 0x53
Operand 1 (bool) - If unique. True if

the trigger being added
should be called with an
argument that identifies this
instance/entrypoint uniquely
at runtime.

Operand 2 (Int32) - The interrupt
priority level of the trigger

15

KASM Mnemonic addt
Description Pops a function pointer from

the stack and adds a trigger
that will be called each cycle.
The argument (to the
opcode, not on the stack)
contains the Interrupt
Priority level of the trigger.
For one trigger to interrupt
another, it needs a higher
priority, else it waits until
the first trigger is completed
before it will fire.

Remove Trigger

Opcode 0x54
Operands None
Stack Argument 1 Function pointer
KASM Mnemonic rmvt
Description Pops a function pointer from

the stack and removes any
triggers that call that
function pointer.

Wait

Opcode 0x55
Operands None
Stack Argument 1 Time to wait in seconds
KASM Mnemonic wait
Description Pops a duration in seconds

from the stack and yields
execution for that amount of
game time.

Get Method

Opcode 0x57
Operand 1 String, StringValue
Stack Argument 1 The structure or identifier of

the structure

16

KASM Mnemonic gmet
Description Get Method is exactly the

same thing as Get Member,
and is in fact a subclass of it.
The only reason for the
distinction is so that at
runtime the instruction can
tell whether the getting of
the member was done with
method call syntax with
parentheses, like
SHIP:NAME(), or
non-method call syntax, like
SHIP:NAME. It needs to
know whether there is an
upcoming Call instruction
coming next or not, so it
knows whether the delegate
will get dealt with later or if
it needs to perform it now.

Store Local

Opcode 0x58
Operand 1 String, StringValue
Stack Argument 1 The value to store
KASM Mnemonic stol
Description Consumes the topmost value

of the stack, storing it into a
variable named in the
identifier operand of this
instruction. The variable
must not exist already in the
local nesting level, and it
will NOT attempt to look
for it in the next scoping
level up. Instead it will
attempt to create the
variable anew at the current
local nesting scope.

Store Global

17

Opcode 0x59
Operand 1 String, StringValue
Stack Argument 1 The value to store
KASM Mnemonic stog
Description Consumes the topmost value

of the stack, storing it into a
variable named by the
identifier operand of this
instruction. The variable
will always be stored at a
global scope, overwriting
whatever else was there if
the variable already existed.
It will ignore local scoping
and never store the value in
a local variable

Push Scope

Opcode 0x5a
Operand 1 (Int16) - the unique id of

this scope frame
Operand 2 (Int16) - the unique id of the

scope frame this scope is
inside of

KASM Mnemonic bscp
Description Pushes a new variable

namespace scope (for
example, when a “{” is
encountered in a
block-scoping language like
C++ or Java or C#.) From
now on any local variables
created will be made in this
new namespace. Has no
argument stack effect.

Pop Scope

Opcode 0x5b
Operand 1 (Int16) - the number of levels
KASM Mnemonic escp

18

Description Pops a variable namespace
scope. From now on any
local variables created
within the previous scope
are orphaned and gone
forever ready to be garbage
collected. It is possible to
give it an argument of more
than 1 to pop more than one
nesting level of scope, to
handle the case where you
are breaking out of more
than one nested level at
once. (i.e. such as might
happen with a break, return,
or exit keyword).

Store Exists

Opcode 0x5c
Operand 1 String, StringValue
Stack Argument 1 The value to store
KASM Mnemonic stoe
Description Consumes the topmost value

of the stack, storing it into a
variable described by
identifer operand of this
instruction, which must
already exist as a variable
before this is executed.
Unlike Store, Store Exist
will NOT create the variable
if it does not already exist.
Instead it will cause an error.
(It corresponds to
KerboScript’s
@LAZYGLOBAL OFF
directive)

Push Delegate

Opcode 0x5d
Operand 1 (Byte, Int16, Int32)

19

Operand 2 (Bool) - If it should be
captured as a closure or not.

KASM Mnemonic phdl
Description Pushes a delegate object

onto the stack, optionally
capturing a closure. What it
means to capture as a
closure means that it will
store a reference to how the
variable scopes are when it
was executed.

Branch True

Opcode 0x5e
Operand 1 (String, Int32)
Stack Argument 1 The boolean/value
KASM Mnemonic btr
Description Consumes one value from

the stack and branches to
the given destination if the
value was true. If the integer
destination is provided, this
represents a relative branch.
If the value is 3, this will
branch 3 instructions
“down”, and -3 is 3
instructions up. This uses 0
== false evaluation

Variable Exists

Opcode 0x5f
Operands None
Stack Argument 1 The identifier
KASM Mnemonic exst

20

Description Tests if the identifier atop
the stack is an identifier that
exists in the system and is
accessible in scope at the
moment. If the identifier
doesn’t exist, or if it does
but it’s out of scope right
now, then it results in a
FALSE, else it results in a
TRUE. The result is pushed
onto the stack for reading.

Argument Bottom

Opcode 0x60
Operands None
Stack Argument 1 Any
KASM Mnemonic argb
Description Asserts that the next thing

on the stack is the argument
bottom marker. If it’s not
the argument bottom, it
throws an error. This does
NOT pop the value from the
stack - it merely peeks at
the stack top. The actual
popping of the arg bottom
value comes later when
doing a return, or a program
bottom exit.

Test Argument Bottom

Opcode 0x61
Operands None
Stack Argument 1 Any
KASM Mnemonic targ

21

Description Tests whether or not the
next thing on the stack is
the argument bottom
marker. It pushes a true on
top if it is, or false if it is not.
In either case it does NOT
consume the arg bottom
marker, but just peeks for it.

Test Trigger Cancelled

Opcode 0x62
Operands None
KASM Mnemonic tcan

22

Description ests whether or not the
current subroutine context
on the stack that is being
executed right now is one
that has been flagged as
cancelled by someone having
called
SubroutineContext.Cancel().
This pushes a True or a
False on the stack to provide
the answer. This should be
the first thing done by
triggers that wish to be
cancel-able by other triggers.
(For example if someone
unlocks steering in one
trigger, the steering function
should not be run after that
even if it had been queued
up at the start of this
physics tick) If you are a
trigger that wishes to be
cancel-able in this fashion,
your trigger body should
start by first calling this to
see if you have been
cancelled, and if it returns
true, then you should return
early without doing the rest
of your body.

Push Relocate Later

Opcode 0xce
Operand 1 (String)
KASM Mnemonic prl

23

Description An “ugly placeholder” to
handle the fact that
sometimes the KerboScript
compiler creates an Push
instruction that uses
relocatable
DestinationLabels as a
temporary place to store
their arguments in the list
until they get added to the
program. For more
information, see the kOS
code on GitHub. Not really
used much.

Push Delegate Relocate Later

Opcode 0xcd
Operand 1 (String)
Operand 2 (Bool) - Should capture as a

closure
KASM Mnemonic pdrl
Description This serves the same

purpose as Push Relocate
Later instruction, except it’s
for use with UserDelegates
instead of raw integer IP
calls. What this means in
simpler terms is that this
instruction is used to push a
function as a delegate onto
the stack in the proper way
that kOS will make it do
what you think it will do.
This will turn the function’s
label into a real location
after it is loaded.

Label Reset

Opcode 0xf0
Operand 1 (String)
KASM Mnemonic lbrt

24

Description Most instructions’ Label
fields are just string-ified
numbers for their index
position. But sometimes,
when they are the entry
point for a function call
(from a lock expression), the
label is an identifier string.
When this is the case, then
the mere position of the
opcode within the program
is not enough to store the
label. Therefore, for
import/export to a KSM file,
in this case the numeric
label needs to be stored. It
is done by creating a dummy
instruction that is just a
no-op instruction intended
to be removed when the
program is actually loaded
into memory and run. It
exists purely to store, as an
argument, the label of the
next opcode to follow it. See
the KSM File Docs for more
information.

25

	Kerbal Operating System Instructions Documentation
	Contents
	Preface
	About kOS instructions
	Terminology
	Instructions
	End of File
	End of Program
	No Operation
	Store
	Unset
	Get Member
	Set Member
	Get Index
	Set Index
	Branch If False
	Jump / Unconditional Branch
	Add
	Subtract
	Multiply
	Divide
	Power
	Compare Greater Than
	Compare Less Than
	Compare Greater Than or Equal
	Compare Less Than or Equal
	Compare Equal
	Compare Not Equal
	Negate
	Convert to Boolean
	Logical Negate / Not
	Logical And
	Logical Or
	Call Function
	Return from a Function
	Push
	Pop
	Duplicate
	Swap
	Evaluate
	Add Trigger
	Remove Trigger
	Wait
	Get Method
	Store Local
	Store Global
	Push Scope
	Pop Scope
	Store Exists
	Push Delegate
	Branch True
	Variable Exists
	Argument Bottom
	Test Argument Bottom
	Test Trigger Cancelled
	Push Relocate Later
	Push Delegate Relocate Later
	Label Reset

