
KSM File Format Documentation
• Version 1.0.1
• Unofficial, written as of July 2021, Kerbal Operating System release ver-

sion 1.3.2.0

Contents
• Preface
• About KSM
• Terminology

1. Overview
2. Argument Section

• Arguments
3. Code Sections

• Instructions
4. Debug Section
5. Example
6. Notes

Preface
This document is intended to provide anyone with an interest in how KSM
files are structured with a thorough explanation of exactly how and why each
component of the file is there. A document like this one exists currently within
the kOS GitHub repository, however it is outdated and does not explain spe-
cific key details. The kOS document also is meant for developers of kOS who
are already familiar with the internal code that handles KSM, while this and
accompanying documents are designed to be able to be used by someone who
is not very familiar with how kOS works internally at all.

There has been an interest for several years to create a new programming lan-
guage for kOS, and many would benefit from being a compiled language rather
than a transpiled one. This document seeks to be able to provide developers
with a strong starting point to be able to begin that undertaking of their own.

If any parts of this document are outdated or incorrect, please notify us by
creating a GitHub issue.

There has been a tool created and maintained called KDump, which is the
equivalent to KSM and KO files as objdump or readelf are to ELF files.

About KSM

The KerboScript Machine Code file format was developed to overcome the prob-
lem of bloated code files filled with comments and repeated data. This data is

1

https://github.com/KSP-KOS/KOS/blob/develop/src/kOS.Safe/Compilation/CompiledObject-doc.md
https://github.com/newcomb-luke/KDump/tree/main

essential to good programming practices, but is not needed for code execution.
This KSM files were created.

KSM files are collections of compiled program data and instructions that is then
compressed in GZIP format to further reduce file size.

Terminology

KSM - KerboScript Machine Code
Instruction - One opcode followed by its operands (look up CPU instructions
on Wikipedia)
Operand - An index into the argument section that stores the data this instruc-
tion references

Overview
As mentioned above, KSM files are compressed using GZIP compression. A file
stored using GZIP can be identified by the first 4 bytes of the file, also known
as the ”file magic”: 0x1f 0x8b 0x08 0x00, or in decimal 31, 139, 8, 0.

Certain GZIP compressors will not output this specific file magic, and instead it
will be slightly different. No manual GZIP compression tool like 7Zip has been
found to create a file that kOS will accept. Nor have the settings that determine
this been found.

KSM files can be decompressed using these tools though, and once extracted,
can be hexdumped to find the actual contents of the file as described here.

Once decompressed, the file will have the following overall structure:

• KSM file magic
• Argument Section
• Code Section(s)
• Debug Section

KSM files have their own file magic that distinguishes them from other files:
0x6b 0x03 0x58 0x45, or in decimal 107, 3, 88, 69.

If converted to ASCII, this becomes: k XE, with the second byte having a value
of 3 and not being ASCII text, just being a 3, therefore: k3XE, or kEXE (Kerbal
Executable).

This file magic is directly followed by the argument section

Argument Section
The purpose of the argument section is to store all of the constant values that
are used by each instruction in the program. This is not usually the way data
like this is stored in real-life file formats like ELF, but kOS is not a real-life
computer and can do what it wants. The main reason for this is to reduce

2

duplicated values used by instructions, as kOS storage space is much more
precious than storage space on your computer.

The argument section has a header, which marks the start of the section and pro-
vides necessary information to continue reading the file. The argument section
header begins with two ASCII characters:

%A

The first argument after the ”%A” is a byte that stores the size of an instruction
operand that is required to index an argument in the argument section. If this
number is 1, then that means that only 1 byte is required to store the maximum
index of an operand to an instruction, so the maxmimum index is 255. If the
number is 2, then 2 bytes are required to store an index into the argument
section. Because this is the width of an index, this means that this is also the
width of each instruction operand in the entire file.

After the %A and the index size byte, follow the arguments.

Arguments

Each argument begins with the argument type. The argument type is 1 byte
wide. kOS currently has 13 argument types:

Name Byte Description
Null 0 Represents a null value just like in other languages.
Boolean 1 Represents true or false. Used for arguments to kOS system calls.
Byte 2 Represents a byte. Used for a few kOS system calls.
Int16 3 16 bit integer.
Int32 4 32 bit integer.
Float 5 32 bit floating point number.
Double 6 64 bit floating point number.
String 7 String.
Argument Marker 8 Used to mark the end of function arguments.
Scalar Integer Value 9 32 bit integer. All KerboScript integers.
Scalar Double Value 10 Double-precision floating point. All KerboScript floats.
Boolean Value 11 Same as above, but a boolean.
String Value 12 Same as above, but a string.

In kOS all integer/floating point arguments are stored in little-endian format.

The values of Null and Argument Marker both have 0 size, they are completely
defined by their type.

Boolean, Byte, and Boolean Value all have a size of 1 byte, not counting the
argument type.

Int16 has a size of 2 bytes not counting the argument type.

3

Int32, Scalar Integer, and Float value are 4 bytes in size.

Double and Scalar Double Value are 8 bytes in size.

String and String Value are different than other kOS values. The format they
are stored in is the same. The next byte after the argument type is a value that
stores the length of the string in characters. After that comes the string’s value.

The next argument starts right after the last one has ended. A program knows
to stop reading the argument section when the next argument’s type instead is
read as the percent sign character: ’%’. This character denotes the start of a
code section.

Code Sections
A code section does what it says on the tin, it holds the actual code that is
executed when you run a program inside of kOS. The first code section always
encountered is a function code section, denoted in the file as the characters
”%F”.

There are 3 types of code sections, function sections, initialization sections, and
main sections.

There can be multiple function sections in one KSM file, and they each store
one user-defined function’s code.

There can be multiple initialization sections defined in one file as well, and they
are used to set default kOS settings before your script starts up or things kOS
needs to do strange magic things with LOCKs for example.

Main sections can only appear once per KSM file, and represent the code that
will be run when the program starts executing. When kOS loads your program,
the entry point is the first instruction in the main section of the loaded file.

Initialization sections and main sections are denoted in the file as ”%I” and
”%M” respectively.

kOS’s KerboScript compiler generally creates KSM files in a non-intuitive way.
Each function section does not stand on it’s own, but is always followed by
initialization and main sections, even if another function is the next code in the
file. To be more clear, this means that after each function section can be empty
initialization and main sections, as shown in a pseudo-hex-dump:

%F(insert some hex codes of instructions here)%I%M%F(more...)

It is possible that instead of being empty, the initialization section is also pop-
ulated with code, so don’t rely on this pattern.

The main section will(should) always be last.

The best way to parse code sections are to keep reading until a % sign is reached,
end that code section and start another. Check if each section is empty, if it

4

is, ignore it ever existed. (Unless parsing the debug section, but that will be
discussed later)

Instructions

Directly after the code section header (the percent sign thing), starts the list
of instructions. Instructions in KSM are variable length. The first byte of
the instruction is the instruction’s opcode. A full list of instruction opcodes is
provided in these docs in another file, however a few will be used for examples.

Three instructions will be used as examples:

Instruction Opcode Value
Add 0x3c
Push 0x4e
Bcsp (Begin scope) 0x5a

Some instructions take operands, others do not. One example of an instruction
that does not take any operands is the Add instruction.

Here is an example of a function section that only contains a complete Add
intruction:

0x25 0x46 0x3c
^^^ ^^^ ^
% F Add

The Add instruction is always the same size: only 1 byte. You may be ask-
ing what the add instruction does, how does it add two numbers if none are
provided? The answer is that kOS is what is called a stack machine. If you
understand what a stack machine is, the next example instruction will certainly
strike you as important, the Push instruction.

An example of the Push instruction in binary form alone is:

0x4e 0x02
^^^ ^
Push 2?

This instruction takes one operand, and in this case the value of that operand
is 5. First of all, the reason that this operand’s size is only 1 byte is because in
this example, we are assuming that argument index width from the Argument
Section above, is 1. If that argument index width were 2, this Push instruction
would be:

0x4e 0x0005

Note that the operand, if multiple bytes, is in big-endian format for some
reason.

5

https://en.wikipedia.org/wiki/Stack_machine

Now for the value of the operand. The value of any instruction’s operand does
not represent the value that will be used, it represents a byte index into the
file’s Argument Section of the value. A key thing to note is that the Argument
Section’s header is included in the index. To be clear, that means that because
the Argument Section’s header is 3 bytes long (%A then number), the first index
an argument can have is 3, and that refers to the first argument in the section.

Finally, if an instruction has more than one operand, they are simply added one
after another. Currently as of writing this documentation, kOS only has up to
2 operands per instruction.

An example of the Bscp instruction which takes two arguments is shown below
using an index size of 1:

0x5a 0x03 0x06

The only way to know the size an instruction will be when reading it is to
keep track of how many operands each instruction takes. As stated above a file
documenting this is provided alongside this one.

Because an instruction’s opcode value is not allowed to be 0x25 which is the
percent sign in ASCII, the end of the current code section can be detected by
checking if the next byte is 0x25, or ’%’.

Debug Section
Each KSM file contains a debug section. This section allows kOS to find out
what source code line an error occurred on without having the code available.

The Debug Section, like the other sections starts with a header that begins with
%: ”%D”.

The Debug Section also has another part of its header, a single byte representing
the size of an index into the object file. 1 for 1 byte, 2 for 2 bytes, etc.

The Debug Section consists of several Debug Entries that map a line number to
one or more Instructions that make up that source line.

A Debug Entry contains the following data:

• Source code line number, a 16-bit signed integer.
• The number of Instruction ranges
• 1 or more Instruction ranges that represent the instructions that make up

the source line.

An example would be a debug entry like this:

Line Number Number of Ranges Range 1
1 1 2 - 7

6

This means that the Instructions within the range 2 through 7 make up line 1,
and nothing else.

Or like this for a more complicated source line:

Line Number Number of Ranges Range 1 Range 2
3 2 7 - 8 10 - 11

This means that the Instructions within range 7 to 8, and 10 to 11, but not
byte 9 (for whatever reason) make up line 3 of the source.

The ranges are the Debug Entry fields that are affected by that index width in
the Debug Section header. So if these two examples were encoded into hexadec-
imal, the first one having an index width of 1, and the second having an index
width of 2:

0x01 0x00 0x01 0x02 0x07
^^^^^^^^^ ^ ^^^^^^
Line 1 1 range 2 - 7

0x03 0x00 0x02 0x0700 0x0800 0x0a00 0x0b00
^^^^^^^^^ ^ ^^^^^^^^ ^^^^^^^
Line 3 2 ranges 7 - 8 10 - 11

The ranges are expressed as byte indexes into the KSM file. The index 0 begins
at the first byte after the Argument Section. And continues on until the Debug
Section is reached. That means that all bytes in the file from the Argument
Section up to that point are counted, including code section headers like %F
and %I%M. So the first valid Instruction index in the file is actually index 2,
because it will have come after one code section header. The debug section ends
when the end of the file is reached.

Example
Here is the full hexdump of the test.ksm file provided in the kerbalobjects.rs
repository:

00000000 6b 03 58 45 25 41 01 07 07 70 72 69 6e 74 28 29 |k.XE%A...print()|
00000010 07 00 09 02 00 00 00 08 07 05 40 30 30 30 31 03 |..........@0001.|
00000020 01 00 03 00 00 25 46 25 49 25 4d f0 14 5a 1b 1e |.....%F%I%M..Z..|
00000030 60 4e 13 4e 0e 4e 0e 3c 4c 0c 03 4f 5b 1b 25 44 |`N.N.N.<L..O[.%D|
00000040 01 01 00 01 06 18 |......|
00000046

As you can see the first 4 bytes of the file are what are expected: 6b 03 58 45,
or as you can see on the left side (mostly) converted to text: k.XE. The next 2
bytes are the expected %A, followed by a byte with the value of 1, meaning the

7

https://github.com/newcomb-luke/kerbalobjects.rs
https://github.com/newcomb-luke/kerbalobjects.rs

Argument Section can be indexed using only 1 byte, or more specifically, that
Instruction operands will be 1 byte wide.

The next byte starts the Argument Section data, and is a 7. Going back to the
list of kOS value types, that is a String. This means that the next byte stores
how long the string is, 7 bytes. Then after that follows the string: 70 72 69 6e
74 28 29. Or more readable to us on the right hand side: print(). ”print()” is
the string used to call the built-in kOS print function.

Using the kOS value reading logic, we get the following arguments in total:

Type Value Index
String ”print()” 0x03
String ”” 0x0c
Scalar Int Value 2 0x0e
ArgMarker n/a 0x13
String ”@0001” 0x14
Int16 1 0x1b
Int16 0 0x1e

Then we hit another %-sign and read: %F%I%M. This means that there is an
empty function section, empty initialization section, and a main section. Then
follow the Instructions.

The first byte in the Main Code Section is 0xf0. This is the opcode for the Label
Reset Instruction. This Instruction takes 1 operand, and that operand is 0x14.
Checking the kOS value at Argument Section index 0x14, we get:

lbrt @0001

This instruction resets the internal kOS label and marks the first Instruction as
the first in the program, and tells kOS where to start running the program.

The next byte after that is 0x5a, which is the opcode for the Begin Scope
Instruction. This Instruction takes two operands, and the next two bytes are
0x1b and 0x1e. These indexes correspond to the values 1 and 0 respectively, so
the instruction encoded here is:

bscp 1, 0

Then the rest of the Instructions are read this way:

Instruction Operand(s)
argb
push ArgMarker
push 2
push 2
add

8

Instruction Operand(s)
call ””, ”print()”
pop
escp 1

Wow! Reading through that, this program adds 2 + 2 and prints the result!
Sounds like a useful program.

At the end of that, the Debug Section is reached. %D is read, and the next byte
after that is a 1, meaning that range indexes will only be 1 byte wide.

In this case there is only one Debug Entry. The next two bytes are 0x01 and
0x00, which encodes the line number of 1. Then the next byte is 0x01, meaning
that there is only 1 range. That range is 0x06 to 0x18, or indexes 6 to 24. If
you do the math, you will find out that bytes 6 through 24 mean all of the Code
Sections, from the Argument Section to the Debug Section, or the entire code
of the file. This encodes that all of the code in this file is from source line 1.

The KerboScript that this KSM File could have been created by compiling could
be:

PRINT 2 + 2.

That is quite a large file to store such a simple program. But when the source
code starts becoming larger, the cost savings of using KSM files to store it
rockets (pun intended), especially when things like comments come into play.

This concludes the description of the kOS KSM file format.

Notes
The best way to get hands-on experience with KSM files is to run the kOS
compiler by running COMPILE (your file).ks. and looking at the output.

9

	KSM File Format Documentation
	Contents
	Preface
	About KSM
	Terminology

	Overview
	Argument Section
	Arguments

	Code Sections
	Instructions

	Debug Section
	Example
	Notes

