%COLAMD_DEMO demo for colamd, column approx minimum degree ordering algorithm % % Example: % colamd_demo % % The following m-files and mexFunctions provide alternative sparse matrix % ordering methods for MATLAB. They are typically faster (sometimes much % faster) and typically provide better orderings than their MATLAB counterparts: % % colamd a replacement for colmmd. % % Typical usage: p = colamd (A) ; % % symamd a replacement for symmmd. Based on colamd. % % Typical usage: p = symamd (A) ; % % For a description of the methods used, see the colamd.c file. % http://www.suitesparse.com % % See also colamd, symamd % Minor changes: in MATLAB 7, symmmd and colmmd are flagged as "obsolete". % This demo checks if they exist, so it should still work when they are removed. % Copyright 1998-2007, Timothy A. Davis, and Stefan Larimore % Developed in collaboration with J. Gilbert and E. Ng. %------------------------------------------------------------------------------- % Print the introduction, the help info, and compile the mexFunctions %------------------------------------------------------------------------------- fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Colamd2/symamd2 demo.') ; fprintf (1, '\n-----------------------------------------------------------\n') ; help colamd_demo ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Colamd help information:') ; fprintf (1, '\n-----------------------------------------------------------\n') ; help colamd2 ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Symamd help information:') ; fprintf (1, '\n-----------------------------------------------------------\n') ; help symamd2 ; %------------------------------------------------------------------------------- % Solving Ax=b %------------------------------------------------------------------------------- n = 100 ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Solving Ax=b for a small %d-by-%d random matrix:', n, n) ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, '\nNote: Random sparse matrices are AWFUL test cases.\n') ; fprintf (1, 'They''re just easy to generate in a demo.\n') ; % set up the system rand ('state', 0) ; randn ('state', 0) ; spparms ('default') ; A = sprandn (n, n, 5/n) + speye (n) ; b = (1:n)' ; fprintf (1, '\n\nSolving via lu (PAQ = LU), where Q is from colamd2:\n') ; q = colamd2 (A) ; I = speye (n) ; Q = I (:, q) ; [L,U,P] = lu (A*Q) ; fl = luflops (L, U) ; x = Q * (U \ (L \ (P * b))) ; fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ; fprintf (1, 'residual: %e\n', norm (A*x-b)); try fprintf (1, '\n\nSolving via lu (PAQ = LU), where Q is from colmmd:\n') ; q = colmmd (A) ; I = speye (n) ; Q = I (:, q) ; [L,U,P] = lu (A*Q) ; fl = luflops (L, U) ; x = Q * (U \ (L \ (P * b))) ; fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ; fprintf (1, 'residual: %e\n', ... norm (A*x-b)) ; catch fprintf (1, 'colmmd is obsolete; test skipped\n') ; end fprintf (1, '\n\nSolving via lu (PA = LU), without regard for sparsity:\n') ; [L,U,P] = lu (A) ; fl = luflops (L, U) ; x = U \ (L \ (P * b)) ; fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ; fprintf (1, 'residual: %e\n', norm (A*x-b)); %------------------------------------------------------------------------------- % Large demo for colamd2 %------------------------------------------------------------------------------- fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Large demo for colamd2 (symbolic analysis only):') ; fprintf (1, '\n-----------------------------------------------------------\n') ; rand ('state', 0) ; randn ('state', 0) ; spparms ('default') ; n = 1000 ; fprintf (1, 'Generating a random %d-by-%d sparse matrix.\n', n, n) ; A = sprandn (n, n, 5/n) + speye (n) ; fprintf (1, '\n\nUnordered matrix:\n') ; lnz = symbfact (A, 'col') ; fprintf (1, 'nz in Cholesky factors of A''A: %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A''A: %d\n', sum (lnz.^2)) ; tic ; p = colamd2 (A) ; t = toc ; lnz = symbfact (A (:,p), 'col') ; fprintf (1, '\n\nColamd run time: %f\n', t) ; fprintf (1, 'colamd2 ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(:,p)''A(:,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(:,p)''A(:,p): %d\n', sum (lnz.^2)) ; try tic ; p = colmmd (A) ; t = toc ; lnz = symbfact (A (:,p), 'col') ; fprintf (1, '\n\nColmmd run time: %f\n', t) ; fprintf (1, 'colmmd ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(:,p)''A(:,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(:,p)''A(:,p): %d\n', ... sum (lnz.^2)) ; catch fprintf (1, 'colmmd is obsolete; test skipped\n') ; end %------------------------------------------------------------------------------- % Large demo for symamd2 %------------------------------------------------------------------------------- fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Large demo for symamd2 (symbolic analysis only):') ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Generating a random symmetric %d-by-%d sparse matrix.\n', n, n) ; A = A+A' ; fprintf (1, '\n\nUnordered matrix:\n') ; lnz = symbfact (A, 'sym') ; fprintf (1, 'nz in Cholesky factors of A: %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A: %d\n', sum (lnz.^2)) ; tic ; p = symamd2 (A) ; t = toc ; lnz = symbfact (A (p,p), 'sym') ; fprintf (1, '\n\nSymamd run time: %f\n', t) ; fprintf (1, 'symamd2 ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(p,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(p,p): %d\n', sum (lnz.^2)) ; try tic ; p = symmmd (A) ; t = toc ; lnz = symbfact (A (p,p), 'sym') ; fprintf (1, '\n\nSymmmd run time: %f\n', t) ; fprintf (1, 'symmmd ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(p,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(p,p): %d\n', sum (lnz.^2)) ; catch fprintf (1, 'symmmd is obsolete\n') ; end