/* ========================================================================== */ /* === KLU_factor =========================================================== */ /* ========================================================================== */ /* Factor the matrix, after ordering and analyzing it with KLU_analyze * or KLU_analyze_given. */ #include "klu_internal.h" /* ========================================================================== */ /* === KLU_factor2 ========================================================== */ /* ========================================================================== */ static void factor2 ( /* inputs, not modified */ Int Ap [ ], /* size n+1, column pointers */ Int Ai [ ], /* size nz, row indices */ Entry Ax [ ], KLU_symbolic *Symbolic, /* inputs, modified on output: */ KLU_numeric *Numeric, KLU_common *Common ) { double lsize ; double *Lnz, *Rs ; Int *P, *Q, *R, *Pnum, *Offp, *Offi, *Pblock, *Pinv, *Iwork, *Lip, *Uip, *Llen, *Ulen ; Entry *Offx, *X, s, *Udiag ; Unit **LUbx ; Int k1, k2, nk, k, block, oldcol, pend, oldrow, n, lnz, unz, p, newrow, nblocks, poff, nzoff, lnz_block, unz_block, scale, max_lnz_block, max_unz_block ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ /* get the contents of the Symbolic object */ n = Symbolic->n ; P = Symbolic->P ; Q = Symbolic->Q ; R = Symbolic->R ; Lnz = Symbolic->Lnz ; nblocks = Symbolic->nblocks ; nzoff = Symbolic->nzoff ; Pnum = Numeric->Pnum ; Offp = Numeric->Offp ; Offi = Numeric->Offi ; Offx = (Entry *) Numeric->Offx ; Lip = Numeric->Lip ; Uip = Numeric->Uip ; Llen = Numeric->Llen ; Ulen = Numeric->Ulen ; LUbx = (Unit **) Numeric->LUbx ; Udiag = Numeric->Udiag ; Rs = Numeric->Rs ; Pinv = Numeric->Pinv ; X = (Entry *) Numeric->Xwork ; /* X is of size n */ Iwork = Numeric->Iwork ; /* 5*maxblock for KLU_factor */ /* 1*maxblock for Pblock */ Pblock = Iwork + 5*((size_t) Symbolic->maxblock) ; Common->nrealloc = 0 ; scale = Common->scale ; max_lnz_block = 1 ; max_unz_block = 1 ; /* compute the inverse of P from symbolic analysis. Will be updated to * become the inverse of the numerical factorization when the factorization * is done, for use in KLU_refactor */ #ifndef NDEBUG for (k = 0 ; k < n ; k++) { Pinv [k] = EMPTY ; } #endif for (k = 0 ; k < n ; k++) { ASSERT (P [k] >= 0 && P [k] < n) ; Pinv [P [k]] = k ; } #ifndef NDEBUG for (k = 0 ; k < n ; k++) ASSERT (Pinv [k] != EMPTY) ; #endif lnz = 0 ; unz = 0 ; Common->noffdiag = 0 ; Offp [0] = 0 ; /* ---------------------------------------------------------------------- */ /* optionally check input matrix and compute scale factors */ /* ---------------------------------------------------------------------- */ if (scale >= 0) { /* use Pnum as workspace. NOTE: scale factors are not yet permuted * according to the final pivot row ordering, so Rs [oldrow] is the * scale factor for A (oldrow,:), for the user's matrix A. Pnum is * used as workspace in KLU_scale. When the factorization is done, * the scale factors are permuted according to the final pivot row * permutation, so that Rs [k] is the scale factor for the kth row of * A(p,q) where p and q are the final row and column permutations. */ KLU_scale (scale, n, Ap, Ai, (double *) Ax, Rs, Pnum, Common) ; if (Common->status < KLU_OK) { /* matrix is invalid */ return ; } } #ifndef NDEBUG if (scale > 0) { for (k = 0 ; k < n ; k++) PRINTF (("Rs [%d] %g\n", k, Rs [k])) ; } #endif /* ---------------------------------------------------------------------- */ /* factor each block using klu */ /* ---------------------------------------------------------------------- */ for (block = 0 ; block < nblocks ; block++) { /* ------------------------------------------------------------------ */ /* the block is from rows/columns k1 to k2-1 */ /* ------------------------------------------------------------------ */ k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; PRINTF (("FACTOR BLOCK %d, k1 %d k2-1 %d nk %d\n", block, k1,k2-1,nk)) ; if (nk == 1) { /* -------------------------------------------------------------- */ /* singleton case */ /* -------------------------------------------------------------- */ poff = Offp [k1] ; oldcol = Q [k1] ; pend = Ap [oldcol+1] ; CLEAR (s) ; if (scale <= 0) { /* no scaling */ for (p = Ap [oldcol] ; p < pend ; p++) { oldrow = Ai [p] ; newrow = Pinv [oldrow] ; if (newrow < k1) { Offi [poff] = oldrow ; Offx [poff] = Ax [p] ; poff++ ; } else { ASSERT (newrow == k1) ; PRINTF (("singleton block %d", block)) ; PRINT_ENTRY (Ax [p]) ; s = Ax [p] ; } } } else { /* row scaling. NOTE: scale factors are not yet permuted * according to the pivot row permutation, so Rs [oldrow] is * used below. When the factorization is done, the scale * factors are permuted, so that Rs [newrow] will be used in * klu_solve, klu_tsolve, and klu_rgrowth */ for (p = Ap [oldcol] ; p < pend ; p++) { oldrow = Ai [p] ; newrow = Pinv [oldrow] ; if (newrow < k1) { Offi [poff] = oldrow ; /* Offx [poff] = Ax [p] / Rs [oldrow] ; */ SCALE_DIV_ASSIGN (Offx [poff], Ax [p], Rs [oldrow]) ; poff++ ; } else { ASSERT (newrow == k1) ; PRINTF (("singleton block %d ", block)) ; PRINT_ENTRY (Ax[p]) ; SCALE_DIV_ASSIGN (s, Ax [p], Rs [oldrow]) ; } } } Udiag [k1] = s ; if (IS_ZERO (s)) { /* singular singleton */ Common->status = KLU_SINGULAR ; Common->numerical_rank = k1 ; Common->singular_col = oldcol ; if (Common->halt_if_singular) { return ; } } Offp [k1+1] = poff ; Pnum [k1] = P [k1] ; lnz++ ; unz++ ; } else { /* -------------------------------------------------------------- */ /* construct and factorize the kth block */ /* -------------------------------------------------------------- */ if (Lnz [block] < 0) { /* COLAMD was used - no estimate of fill-in */ /* use 10 times the nnz in A, plus n */ lsize = -(Common->initmem) ; } else { lsize = Common->initmem_amd * Lnz [block] + nk ; } /* allocates 1 arrays: LUbx [block] */ Numeric->LUsize [block] = KLU_kernel_factor (nk, Ap, Ai, Ax, Q, lsize, &LUbx [block], Udiag + k1, Llen + k1, Ulen + k1, Lip + k1, Uip + k1, Pblock, &lnz_block, &unz_block, X, Iwork, k1, Pinv, Rs, Offp, Offi, Offx, Common) ; if (Common->status < KLU_OK || (Common->status == KLU_SINGULAR && Common->halt_if_singular)) { /* out of memory, invalid inputs, or singular */ return ; } PRINTF (("\n----------------------- L %d:\n", block)) ; ASSERT (KLU_valid_LU (nk, TRUE, Lip+k1, Llen+k1, LUbx [block])) ; PRINTF (("\n----------------------- U %d:\n", block)) ; ASSERT (KLU_valid_LU (nk, FALSE, Uip+k1, Ulen+k1, LUbx [block])) ; /* -------------------------------------------------------------- */ /* get statistics */ /* -------------------------------------------------------------- */ lnz += lnz_block ; unz += unz_block ; max_lnz_block = MAX (max_lnz_block, lnz_block) ; max_unz_block = MAX (max_unz_block, unz_block) ; if (Lnz [block] == EMPTY) { /* revise estimate for subsequent factorization */ Lnz [block] = MAX (lnz_block, unz_block) ; } /* -------------------------------------------------------------- */ /* combine the klu row ordering with the symbolic pre-ordering */ /* -------------------------------------------------------------- */ PRINTF (("Pnum, 1-based:\n")) ; for (k = 0 ; k < nk ; k++) { ASSERT (k + k1 < n) ; ASSERT (Pblock [k] + k1 < n) ; Pnum [k + k1] = P [Pblock [k] + k1] ; PRINTF (("Pnum (%d + %d + 1 = %d) = %d + 1 = %d\n", k, k1, k+k1+1, Pnum [k+k1], Pnum [k+k1]+1)) ; } /* the local pivot row permutation Pblock is no longer needed */ } } ASSERT (nzoff == Offp [n]) ; PRINTF (("\n------------------- Off diagonal entries:\n")) ; ASSERT (KLU_valid (n, Offp, Offi, Offx)) ; Numeric->lnz = lnz ; Numeric->unz = unz ; Numeric->max_lnz_block = max_lnz_block ; Numeric->max_unz_block = max_unz_block ; /* compute the inverse of Pnum */ #ifndef NDEBUG for (k = 0 ; k < n ; k++) { Pinv [k] = EMPTY ; } #endif for (k = 0 ; k < n ; k++) { ASSERT (Pnum [k] >= 0 && Pnum [k] < n) ; Pinv [Pnum [k]] = k ; } #ifndef NDEBUG for (k = 0 ; k < n ; k++) ASSERT (Pinv [k] != EMPTY) ; #endif /* permute scale factors Rs according to pivotal row order */ if (scale > 0) { for (k = 0 ; k < n ; k++) { REAL (X [k]) = Rs [Pnum [k]] ; } for (k = 0 ; k < n ; k++) { Rs [k] = REAL (X [k]) ; } } PRINTF (("\n------------------- Off diagonal entries, old:\n")) ; ASSERT (KLU_valid (n, Offp, Offi, Offx)) ; /* apply the pivot row permutations to the off-diagonal entries */ for (p = 0 ; p < nzoff ; p++) { ASSERT (Offi [p] >= 0 && Offi [p] < n) ; Offi [p] = Pinv [Offi [p]] ; } PRINTF (("\n------------------- Off diagonal entries, new:\n")) ; ASSERT (KLU_valid (n, Offp, Offi, Offx)) ; #ifndef NDEBUG { PRINTF (("\n ############# KLU_BTF_FACTOR done, nblocks %d\n",nblocks)); Entry ss, *Udiag = Numeric->Udiag ; for (block = 0 ; block < nblocks && Common->status == KLU_OK ; block++) { k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; PRINTF (("\n======================KLU_factor output: k1 %d k2 %d nk %d\n",k1,k2,nk)) ; if (nk == 1) { PRINTF (("singleton ")) ; /* ENTRY_PRINT (singleton [block]) ; */ ss = Udiag [k1] ; PRINT_ENTRY (ss) ; } else { Int *Lip, *Uip, *Llen, *Ulen ; Unit *LU ; Lip = Numeric->Lip + k1 ; Llen = Numeric->Llen + k1 ; LU = (Unit *) Numeric->LUbx [block] ; PRINTF (("\n---- L block %d\n", block)); ASSERT (KLU_valid_LU (nk, TRUE, Lip, Llen, LU)) ; Uip = Numeric->Uip + k1 ; Ulen = Numeric->Ulen + k1 ; PRINTF (("\n---- U block %d\n", block)) ; ASSERT (KLU_valid_LU (nk, FALSE, Uip, Ulen, LU)) ; } } } #endif } /* ========================================================================== */ /* === KLU_factor =========================================================== */ /* ========================================================================== */ KLU_numeric *KLU_factor /* returns NULL if error, or a valid KLU_numeric object if successful */ ( /* --- inputs --- */ Int Ap [ ], /* size n+1, column pointers */ Int Ai [ ], /* size nz, row indices */ double Ax [ ], KLU_symbolic *Symbolic, /* -------------- */ KLU_common *Common ) { Int n, nzoff, nblocks, maxblock, k, ok = TRUE ; KLU_numeric *Numeric ; size_t n1, nzoff1, s, b6, n3 ; if (Common == NULL) { return (NULL) ; } Common->status = KLU_OK ; Common->numerical_rank = EMPTY ; Common->singular_col = EMPTY ; /* ---------------------------------------------------------------------- */ /* get the contents of the Symbolic object */ /* ---------------------------------------------------------------------- */ /* check for a valid Symbolic object */ if (Symbolic == NULL) { Common->status = KLU_INVALID ; return (NULL) ; } n = Symbolic->n ; nzoff = Symbolic->nzoff ; nblocks = Symbolic->nblocks ; maxblock = Symbolic->maxblock ; PRINTF (("KLU_factor: n %d nzoff %d nblocks %d maxblock %d\n", n, nzoff, nblocks, maxblock)) ; /* ---------------------------------------------------------------------- */ /* get control parameters and make sure they are in the proper range */ /* ---------------------------------------------------------------------- */ Common->initmem_amd = MAX (1.0, Common->initmem_amd) ; Common->initmem = MAX (1.0, Common->initmem) ; Common->tol = MIN (Common->tol, 1.0) ; Common->tol = MAX (0.0, Common->tol) ; Common->memgrow = MAX (1.0, Common->memgrow) ; /* ---------------------------------------------------------------------- */ /* allocate the Numeric object */ /* ---------------------------------------------------------------------- */ /* this will not cause size_t overflow (already checked by KLU_symbolic) */ n1 = ((size_t) n) + 1 ; nzoff1 = ((size_t) nzoff) + 1 ; Numeric = KLU_malloc (1, sizeof (KLU_numeric), Common) ; if (Common->status < KLU_OK) { /* out of memory */ Common->status = KLU_OUT_OF_MEMORY ; return (NULL) ; } Numeric->n = n ; Numeric->nblocks = nblocks ; Numeric->nzoff = nzoff ; Numeric->Pnum = KLU_malloc (n, sizeof (Int), Common) ; Numeric->Offp = KLU_malloc (n1, sizeof (Int), Common) ; Numeric->Offi = KLU_malloc (nzoff1, sizeof (Int), Common) ; Numeric->Offx = KLU_malloc (nzoff1, sizeof (Entry), Common) ; Numeric->Lip = KLU_malloc (n, sizeof (Int), Common) ; Numeric->Uip = KLU_malloc (n, sizeof (Int), Common) ; Numeric->Llen = KLU_malloc (n, sizeof (Int), Common) ; Numeric->Ulen = KLU_malloc (n, sizeof (Int), Common) ; Numeric->LUsize = KLU_malloc (nblocks, sizeof (size_t), Common) ; Numeric->LUbx = KLU_malloc (nblocks, sizeof (Unit *), Common) ; if (Numeric->LUbx != NULL) { for (k = 0 ; k < nblocks ; k++) { Numeric->LUbx [k] = NULL ; } } Numeric->Udiag = KLU_malloc (n, sizeof (Entry), Common) ; if (Common->scale > 0) { Numeric->Rs = KLU_malloc (n, sizeof (double), Common) ; } else { /* no scaling */ Numeric->Rs = NULL ; } Numeric->Pinv = KLU_malloc (n, sizeof (Int), Common) ; /* allocate permanent workspace for factorization and solve. Note that the * solver will use an Xwork of size 4n, whereas the factorization codes use * an Xwork of size n and integer space (Iwork) of size 6n. KLU_condest * uses an Xwork of size 2n. Total size is: * * n*sizeof(Entry) + max (6*maxblock*sizeof(Int), 3*n*sizeof(Entry)) */ s = KLU_mult_size_t (n, sizeof (Entry), &ok) ; n3 = KLU_mult_size_t (n, 3 * sizeof (Entry), &ok) ; b6 = KLU_mult_size_t (maxblock, 6 * sizeof (Int), &ok) ; Numeric->worksize = KLU_add_size_t (s, MAX (n3, b6), &ok) ; Numeric->Work = KLU_malloc (Numeric->worksize, 1, Common) ; Numeric->Xwork = Numeric->Work ; Numeric->Iwork = (Int *) ((Entry *) Numeric->Xwork + n) ; if (!ok || Common->status < KLU_OK) { /* out of memory or problem too large */ Common->status = ok ? KLU_OUT_OF_MEMORY : KLU_TOO_LARGE ; KLU_free_numeric (&Numeric, Common) ; return (NULL) ; } /* ---------------------------------------------------------------------- */ /* factorize the blocks */ /* ---------------------------------------------------------------------- */ factor2 (Ap, Ai, (Entry *) Ax, Symbolic, Numeric, Common) ; /* ---------------------------------------------------------------------- */ /* return or free the Numeric object */ /* ---------------------------------------------------------------------- */ if (Common->status < KLU_OK) { /* out of memory or inputs invalid */ KLU_free_numeric (&Numeric, Common) ; } else if (Common->status == KLU_SINGULAR) { if (Common->halt_if_singular) { /* Matrix is singular, and the Numeric object is only partially * defined because we halted early. This is the default case for * a singular matrix. */ KLU_free_numeric (&Numeric, Common) ; } } else if (Common->status == KLU_OK) { /* successful non-singular factorization */ Common->numerical_rank = n ; Common->singular_col = n ; } return (Numeric) ; }