// kaldi-native-fbank/csrc/feature-window.h // // Copyright (c) 2022 Xiaomi Corporation (authors: Fangjun Kuang) // This file is copied/modified from kaldi/src/feat/feature-window.h #ifndef KALDI_NATIVE_FBANK_CSRC_FEATURE_WINDOW_H_ #define KALDI_NATIVE_FBANK_CSRC_FEATURE_WINDOW_H_ #include #include #include #include #include "kaldi-native-fbank/csrc/log.h" namespace knf { inline int32_t RoundUpToNearestPowerOfTwo(int32_t n) { // copied from kaldi/src/base/kaldi-math.cc KNF_CHECK_GT(n, 0); n--; n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; return n + 1; } struct FrameExtractionOptions { float samp_freq = 16000; float frame_shift_ms = 10.0f; // in milliseconds. float frame_length_ms = 25.0f; // in milliseconds. float dither = 0.00003f; // Amount of dithering, 0.0 means no dither. // Value 0.00003f is equivalent to 1.0 in kaldi. float preemph_coeff = 0.97f; // Preemphasis coefficient. bool remove_dc_offset = true; // Subtract mean of wave before FFT. std::string window_type = "povey"; // e.g. Hamming window // May be "hamming", "rectangular", "povey", "hanning", "hann", "sine", // "blackman". // "povey" is a window I made to be similar to Hamming but to go to zero at // the edges, it's pow((0.5 - 0.5*cos(n/N*2*pi)), 0.85) I just don't think the // Hamming window makes sense as a windowing function. bool round_to_power_of_two = true; float blackman_coeff = 0.42f; bool snip_edges = true; // bool allow_downsample = false; // bool allow_upsample = false; int32_t WindowShift() const { return static_cast(samp_freq * 0.001f * frame_shift_ms); } int32_t WindowSize() const { return static_cast(samp_freq * 0.001f * frame_length_ms); } int32_t PaddedWindowSize() const { return (round_to_power_of_two ? RoundUpToNearestPowerOfTwo(WindowSize()) : WindowSize()); } std::string ToString() const { std::ostringstream os; #define KNF_PRINT(x) os << #x << ": " << x << "\n" KNF_PRINT(samp_freq); KNF_PRINT(frame_shift_ms); KNF_PRINT(frame_length_ms); KNF_PRINT(dither); KNF_PRINT(preemph_coeff); KNF_PRINT(remove_dc_offset); KNF_PRINT(window_type); KNF_PRINT(round_to_power_of_two); KNF_PRINT(blackman_coeff); KNF_PRINT(snip_edges); // KNF_PRINT(allow_downsample); // KNF_PRINT(allow_upsample); #undef KNF_PRINT return os.str(); } }; std::ostream &operator<<(std::ostream &os, const FrameExtractionOptions &opts); class FeatureWindowFunction { public: FeatureWindowFunction() = default; explicit FeatureWindowFunction(const FrameExtractionOptions &opts); /** * @param wave Pointer to a 1-D array of shape [window_size]. * It is modified in-place: wave[i] = wave[i] * window_[i]. * @param */ void Apply(float *wave) const; const std::vector &GetWindow() const { return window_; } private: std::vector window_; // of size opts.WindowSize() }; int64_t FirstSampleOfFrame(int32_t frame, const FrameExtractionOptions &opts); /** This function returns the number of frames that we can extract from a wave file with the given number of samples in it (assumed to have the same sampling rate as specified in 'opts'). @param [in] num_samples The number of samples in the wave file. @param [in] opts The frame-extraction options class @param [in] flush True if we are asserting that this number of samples is 'all there is', false if we expecting more data to possibly come in. This only makes a difference to the answer if opts.snip_edges== false. For offline feature extraction you always want flush == true. In an online-decoding context, once you know (or decide) that no more data is coming in, you'd call it with flush == true at the end to flush out any remaining data. */ int32_t NumFrames(int64_t num_samples, const FrameExtractionOptions &opts, bool flush = true); /* ExtractWindow() extracts a windowed frame of waveform (possibly with a power-of-two, padded size, depending on the config), including all the processing done by ProcessWindow(). @param [in] sample_offset If 'wave' is not the entire waveform, but part of it to the left has been discarded, then the number of samples prior to 'wave' that we have already discarded. Set this to zero if you are processing the entire waveform in one piece, or if you get 'no matching function' compilation errors when updating the code. @param [in] wave The waveform @param [in] f The frame index to be extracted, with 0 <= f < NumFrames(sample_offset + wave.Dim(), opts, true) @param [in] opts The options class to be used @param [in] window_function The windowing function, as derived from the options class. @param [out] window The windowed, possibly-padded waveform to be extracted. Will be resized as needed. @param [out] log_energy_pre_window If non-NULL, the log-energy of the signal prior to pre-emphasis and multiplying by the windowing function will be written to here. */ void ExtractWindow(int64_t sample_offset, const std::vector &wave, int32_t f, const FrameExtractionOptions &opts, const FeatureWindowFunction &window_function, std::vector *window, float *log_energy_pre_window = nullptr); /** This function does all the windowing steps after actually extracting the windowed signal: depending on the configuration, it does dithering, dc offset removal, preemphasis, and multiplication by the windowing function. @param [in] opts The options class to be used @param [in] window_function The windowing function-- should have been initialized using 'opts'. @param [in,out] window A vector of size opts.WindowSize(). Note: it will typically be a sub-vector of a larger vector of size opts.PaddedWindowSize(), with the remaining samples zero, as the FFT code is more efficient if it operates on data with power-of-two size. @param [out] log_energy_pre_window If non-NULL, then after dithering and DC offset removal, this function will write to this pointer the log of the total energy (i.e. sum-squared) of the frame. */ void ProcessWindow(const FrameExtractionOptions &opts, const FeatureWindowFunction &window_function, float *window, float *log_energy_pre_window = nullptr); // Compute the inner product of two vectors float InnerProduct(const float *a, const float *b, int32_t n); } // namespace knf #endif // KALDI_NATIVE_FBANK_CSRC_FEATURE_WINDOW_H_