/** * Copyright 2022 Xiaomi Corporation (authors: Fangjun Kuang) * * See LICENSE for clarification regarding multiple authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "gtest/gtest.h" #include "kaldi-native-fbank/csrc/rfft.h" namespace knf { #if 0 >>> import torch >>> a = torch.tensor([1., -1, 3, 8, 20, 6, 0, 2]) >>> torch.fft.rfft(a) tensor([ 39.0000+0.0000j, -28.1924-2.2929j, 18.0000+5.0000j, -9.8076+3.7071j, 9.0000+0.0000j]) #endif TEST(Rfft, TestRfft) { knf::Rfft fft(8); for (int32_t i = 0; i != 10; ++i) { std::vector d = {1, -1, 3, 8, 20, 6, 0, 2}; fft.Compute(d.data()); EXPECT_EQ(d[0], 39); EXPECT_EQ(d[1], 9); EXPECT_NEAR(d[2], -28.1924, 1e-3); EXPECT_NEAR(-d[3], -2.2929, 1e-3); EXPECT_NEAR(d[4], 18, 1e-3); EXPECT_NEAR(-d[5], 5, 1e-3); EXPECT_NEAR(d[6], -9.8076, 1e-3); EXPECT_NEAR(-d[7], 3.7071, 1e-3); } } } // namespace knf