use kornia_rs::image::Image; use kornia_rs::io::functional as F; fn main() -> Result<(), Box> { // read the image let image_path = std::path::Path::new("tests/data/dog.jpeg"); let image: Image = F::read_image_any(image_path)?; // binarize the image as u8 let _image_bin: Image = kornia_rs::threshold::threshold_binary(&image.clone(), 127, 255)?; // normalize the image between 0 and 1 let image_f32: Image = image.cast_and_scale::(1.0 / 255.0)?; // convert to grayscale as floating point let gray_f32: Image = kornia_rs::color::gray_from_rgb(&image_f32)?; // binarize the gray image as floating point let gray_bin: Image = kornia_rs::threshold::threshold_binary(&gray_f32, 0.5, 1.0)?; // create a Rerun recording stream let rec = rerun::RecordingStreamBuilder::new("Kornia App").spawn()?; rec.log("image", &rerun::Image::try_from(image_f32.data)?)?; rec.log("gray", &rerun::Image::try_from(gray_f32.data)?)?; rec.log("gray_bin", &rerun::Image::try_from(gray_bin.data)?)?; Ok(()) }