const korvus = require("korvus"); require("dotenv").config(); const main = async () => { // Initialize the collection const collection = korvus.newCollection("qa_collection"); // Add a pipeline const pipeline = korvus.newPipeline("qa_pipeline", { text: { splitter: { model: "recursive_character" }, semantic_search: { model: "Alibaba-NLP/gte-base-en-v1.5", }, }, }); await collection.add_pipeline(pipeline); // Upsert documents, these documents are automatically split into chunks and embedded by our pipeline const documents = [ { id: "Document One", text: "PostgresML is the best tool for machine learning applications!", }, { id: "Document Two", text: "PostgresML is open source and available to everyone!", }, ]; await collection.upsert_documents(documents); // Perform vector search const query = "What is the best tool for building machine learning applications?"; const queryResults = await collection.vector_search( { query: { fields: { text: { query: query } } }, limit: 1 }, pipeline); console.log("The results"); console.log(queryResults); const context = queryResults.map((result) => result["chunk"]).join("\n\n"); // Query for summarization const builtins = korvus.newBuiltins(); const answer = await builtins.transform( { task: "summarization", model: "sshleifer/distilbart-cnn-12-6" }, [context], ); console.log("The summary"); console.log(answer); // Archive the collection await collection.archive(); }; main().then(() => console.log("Done!"));