from korvus import Collection, Pipeline from datasets import load_dataset from time import time from dotenv import load_dotenv from rich.console import Console import asyncio async def main(): load_dotenv() console = Console() # Initialize collection collection = Collection("squad_collection") # Create and add pipeline pipeline = Pipeline( "squadv1", { "text": { "splitter": {"model": "recursive_character"}, "semantic_search": { "model": "Alibaba-NLP/gte-base-en-v1.5", }, } }, ) await collection.add_pipeline(pipeline) # Prep documents for upserting data = load_dataset("squad", split="train") data = data.to_pandas() data = data.drop_duplicates(subset=["context"]) documents = [ {"id": r["id"], "text": r["context"], "title": r["title"]} for r in data.to_dict(orient="records") ] # Upsert documents await collection.upsert_documents(documents[:200]) # Query for answer query = "Who won more than 20 grammy awards?" console.print("Querying for context ...") start = time() results = await collection.vector_search( { "query": { "fields": { "text": { "query": query, "parameters": { "instruction": "Represent the Wikipedia question for retrieving supporting documents: " }, }, } }, "limit": 5, }, pipeline, ) end = time() console.print("\n Results for '%s' " % (query), style="bold") console.print(results) console.print("Query time = %0.3f" % (end - start)) # Archive collection await collection.archive() if __name__ == "__main__": asyncio.run(main())