from korvus import Collection, Pipeline, OpenSourceAI, init_logger import json from datasets import load_dataset from time import time from dotenv import load_dotenv from rich.console import Console import asyncio init_logger() async def main(): load_dotenv() console = Console() # Initialize collection collection = Collection("squad_collection") # Create and add pipeline pipeline = Pipeline( "squadv1", { "text": { "splitter": {"model": "recursive_character"}, "semantic_search": {"model": "Alibaba-NLP/gte-base-en-v1.5"}, } }, ) await collection.add_pipeline(pipeline) # Prep documents for upserting data = load_dataset("squad", split="train") data = data.to_pandas() data = data.drop_duplicates(subset=["context"]) documents = [ {"id": r["id"], "text": r["context"], "title": r["title"]} for r in data.to_dict(orient="records") ] # Upsert documents await collection.upsert_documents(documents[:200]) # Query for context query = "Who won more than 20 grammy awards?" console.print("Querying for context ...") start = time() results = await collection.vector_search( {"query": {"fields": {"text": {"query": query}}}, "limit": 10}, pipeline ) end = time() console.print("\n Results for '%s' " % (query), style="bold") console.print(results) console.print("Query time = %0.3f" % (end - start)) # Construct context from results chunks = [r["chunk"] for r in results] context = "\n\n".join(chunks) # Query for answer system_prompt = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum and keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.""" user_prompt_template = """ #### Documents #### {context} ### User: {question} ### """ user_prompt = user_prompt_template.format(context=context, question=query) messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ] # Using OpenSource LLMs for Chat Completion client = OpenSourceAI() chat_completion_model = "meta-llama/Meta-Llama-3-8B-Instruct" console.print("Generating response using %s LLM..."%chat_completion_model) response = client.chat_completions_create( model=chat_completion_model, messages=messages, temperature=0.3, max_tokens=256, ) output = response["choices"][0]["message"]["content"] console.print("Answer: %s"%output) # Archive collection await collection.archive() if __name__ == "__main__": asyncio.run(main())