from korvus import Collection, Pipeline from datasets import load_dataset from time import time from dotenv import load_dotenv from rich.console import Console import asyncio async def main(): load_dotenv() console = Console() # Initialize collection collection = Collection("quora_collection") # Create and add pipeline pipeline = Pipeline( "quorav1", { "text": { "splitter": {"model": "recursive_character"}, "semantic_search": {"model": "Alibaba-NLP/gte-base-en-v1.5"}, } }, ) await collection.add_pipeline(pipeline) # Prep documents for upserting dataset = load_dataset("quora", split="train") questions = [] for record in dataset["questions"]: questions.extend(record["text"]) # Remove duplicates and add id documents = [] for i, question in enumerate(list(set(questions))): if question: documents.append({"id": i, "text": question}) # Upsert documents await collection.upsert_documents(documents[:2000]) # Query query = "What is a good mobile os?" console.print("Querying for %s..." % query) start = time() results = await collection.vector_search( {"query": {"fields": {"text": {"query": query}}}, "limit": 5}, pipeline ) end = time() console.print("\n Results for '%s' " % (query), style="bold") console.print(results) console.print("Query time = %0.3f" % (end - start)) # Archive collection await collection.archive() if __name__ == "__main__": asyncio.run(main())