from korvus import Collection, Model, Splitter, Pipeline from datasets import load_dataset from time import time from dotenv import load_dotenv from rich.console import Console from rich.progress import track import pandas as pd import asyncio async def main(): load_dotenv() console = Console() # Initialize collection collection = Collection("ott_qa_20k_collection") # Create and add pipeline pipeline = Pipeline( "ott_qa_20kv1", { "text": { "splitter": {"model": "recursive_character"}, # A SentenceTransformer model trained specifically for embedding tabular data for retrieval "semantic_search": {"model": "deepset/all-mpnet-base-v2-table"}, } }, ) await collection.add_pipeline(pipeline) # Prep documents for upserting data = load_dataset("ashraq/ott-qa-20k", split="train") documents = [] # loop through the dataset and convert tabular data to pandas dataframes for doc in track(data): table = pd.DataFrame(doc["data"], columns=doc["header"]) processed_table = "\n".join([table.to_csv(index=False)]) documents.append( { "text": processed_table, "title": doc["title"], "url": doc["url"], "id": doc["uid"], } ) # Upsert documents await collection.upsert_documents(documents[:100]) # Query query = "Which country has the highest GDP in 2020?" console.print("Querying for %s..." % query) start = time() results = await collection.vector_search( {"query": {"fields": {"text": {"query": query}}}, "limit": 5}, pipeline ) end = time() console.print("\n Results for '%s' " % (query), style="bold") console.print(results) console.print("Query time = %0.3f" % (end - start)) # Archive collection await collection.archive() if __name__ == "__main__": asyncio.run(main())