#include #include "ksw2.h" #ifdef __SSE2__ #include #ifdef __SSE4_1__ #include #endif void ksw_extf2_sse(void *km, int qlen, const uint8_t *query, int tlen, const uint8_t *target, int8_t mch, int8_t mis, int8_t e, int w, int xdrop, ksw_extz_t *ez) { int32_t r, t, tlen_, qlen_, last_st, last_en, H0 = 0, last_H0_t = 0; uint8_t *qr, *sf, *mem; __m128i e2_, sc_mch_, sc_mis_, *u, *v, *s; ksw_reset_extz(ez); e2_ = _mm_set1_epi8(e * 2); sc_mch_ = _mm_set1_epi8(mch); sc_mis_ = _mm_set1_epi8(mis < 0? mis : -mis); tlen_ = (tlen + 15) / 16; qlen_ = (qlen + 15) / 16; if (w < 0) w = tlen > qlen? tlen : qlen; mem = (uint8_t*)kcalloc(km, tlen_ * 4 + qlen_ + 1, 16); u = (__m128i*)(((size_t)mem + 15) >> 4 << 4); // 16-byte aligned v = u + tlen_, s = v + tlen_, sf = (uint8_t*)(s + tlen_), qr = sf + tlen_ * 16; for (t = 0; t < qlen; ++t) qr[t] = query[qlen - 1 - t]; memcpy(sf, target, tlen); for (r = 0, last_st = last_en = -1; r < qlen + tlen - 1; ++r) { int st = 0, en = tlen - 1, st0, en0, st_, en_; uint8_t v1, *qrr = qr + (qlen - 1 - r), *u8 = (uint8_t*)u, *v8 = (uint8_t*)v; __m128i v1_; // find the boundaries if (st < r - qlen + 1) st = r - qlen + 1; if (en > r) en = r; if (st < (r-w+1)>>1) st = (r-w+1)>>1; // take the ceil if (en > (r+w)>>1) en = (r+w)>>1; // take the floor if (st > en) break; st0 = st, en0 = en; st = st / 16 * 16, en = (en + 16) / 16 * 16 - 1; // set boundary conditions v1 = (st > 0 && st - 1 >= last_st && st - 1 <= last_en)? v8[st - 1] : 0; if (en >= r) u8[r] = 0; // core loop v1_ = _mm_cvtsi32_si128(v1); st_ = st / 16, en_ = en / 16; for (t = st0; t <= en0; t += 16) { __m128i sq, st, tmp; sq = _mm_loadu_si128((__m128i*)&sf[t]); st = _mm_loadu_si128((__m128i*)&qrr[t]); tmp = _mm_cmpeq_epi8(sq, st); #ifdef __SSE4_1__ tmp = _mm_blendv_epi8(sc_mis_, sc_mch_, tmp); #else tmp = _mm_or_si128(_mm_andnot_si128(tmp, sc_mis_), _mm_and_si128(tmp, sc_mch_)); #endif _mm_storeu_si128((__m128i*)((uint8_t*)s + t), tmp); } for (t = st_; t <= en_; ++t) { __m128i z, vt1, ut, tmp; z = _mm_add_epi8(_mm_load_si128(&s[t]), e2_); vt1 = _mm_load_si128(&v[t]); // vt1 <- v[r-1][t..t+15] tmp = _mm_srli_si128(vt1, 15); // tmp <- v[r-1][t+15] vt1 = _mm_or_si128(_mm_slli_si128(vt1, 1), v1_); // vt1 <- v[r-1][t-1..t+14] v1_ = tmp; ut = _mm_load_si128(&u[t]); // ut <- u[t..t+15] #ifdef __SSE4_1__ z = _mm_max_epi8(z, vt1); // z = z > a? z : a (signed) #else z = _mm_and_si128(z, _mm_cmpgt_epi8(z, _mm_setzero_si128())); // z = z > 0? z : 0; z = _mm_max_epu8(z, vt1); // z = max(z, a); this works because both are non-negative #endif z = _mm_max_epu8(z, ut); // z = max(z, b); this works because both are non-negative _mm_store_si128(&u[t], _mm_sub_epi8(z, vt1)); // u[r][t..t+15] <- z - v[r-1][t-1..t+14] _mm_store_si128(&v[t], _mm_sub_epi8(z, ut)); // v[r][t..t+15] <- z - u[r-1][t..t+15] } if (r > 0) { if (last_H0_t >= st0 && last_H0_t <= en0 && last_H0_t + 1 >= st0 && last_H0_t + 1 <= en0) { int32_t d0 = v8[last_H0_t] - e, d1 = u8[last_H0_t + 1] - e; if (d0 > d1) H0 += d0; else H0 += d1, ++last_H0_t; } else if (last_H0_t >= st0 && last_H0_t <= en0) { H0 += v8[last_H0_t] - e; } else { ++last_H0_t, H0 += u8[last_H0_t] - e; } if (H0 > ez->max) ez->max = H0, ez->max_t = last_H0_t, ez->max_q = r - last_H0_t; else if (xdrop >= 0 && ez->max - H0 > xdrop) break; } else H0 = v8[0] - e - e, last_H0_t = 0; last_st = st, last_en = en; } if (r == qlen + tlen - 1) ez->score = H0; else ez->zdropped = 1; kfree(km, mem); } #endif // __SSE2__