#include // for debugging only #include "ksw2.h" #ifdef __SSE2__ #include #ifdef __SSE4_1__ #include #endif int ksw_gg2_sse(void *km, int qlen, const uint8_t *query, int tlen, const uint8_t *target, int8_t m, const int8_t *mat, int8_t q, int8_t e, int w, int *m_cigar_, int *n_cigar_, uint32_t **cigar_) { int r, t, n_col, n_col_, *off, tlen_, last_st, last_en, H0 = 0, last_H0_t = 0; uint8_t *qr, *mem, *mem2; __m128i *u, *v, *x, *y, *s, *p; __m128i q_, qe2_, zero_, flag1_, flag2_, flag8_, flag16_; zero_ = _mm_set1_epi8(0); q_ = _mm_set1_epi8(q); qe2_ = _mm_set1_epi8((q + e) * 2); flag1_ = _mm_set1_epi8(1); flag2_ = _mm_set1_epi8(2); flag8_ = _mm_set1_epi8(0x08); flag16_ = _mm_set1_epi8(0x10); if (w < 0) w = tlen > qlen? tlen : qlen; n_col = w + 1 < tlen? w + 1 : tlen; // number of columns in the backtrack matrix tlen_ = (tlen + 15) / 16; n_col_ = (n_col + 15) / 16 + 1; n_col = n_col_ * 16; mem = (uint8_t*)kcalloc(km, tlen_ * 5 + 1, 16); u = (__m128i*)(((size_t)mem + 15) >> 4 << 4); // 16-byte aligned v = u + tlen_, x = v + tlen_, y = x + tlen_, s = y + tlen_; qr = (uint8_t*)kcalloc(km, qlen, 1); mem2 = (uint8_t*)kmalloc(km, ((qlen + tlen - 1) * n_col_ + 1) * 16); p = (__m128i*)(((size_t)mem2 + 15) >> 4 << 4); off = (int*)kmalloc(km, (qlen + tlen - 1) * sizeof(int)); for (t = 0; t < qlen; ++t) qr[t] = query[qlen - 1 - t]; for (r = 0, last_st = last_en = -1; r < qlen + tlen - 1; ++r) { int st = 0, en = tlen - 1, st0, en0, st_, en_; int8_t x1, v1; __m128i x1_, v1_, *pr; // find the boundaries if (st < r - qlen + 1) st = r - qlen + 1; if (en > r) en = r; if (st < (r-w+1)>>1) st = (r-w+1)>>1; // take the ceil if (en > (r+w)>>1) en = (r+w)>>1; // take the floor st0 = st, en0 = en; st = st / 16 * 16, en = (en + 16) / 16 * 16 - 1; off[r] = st; // set boundary conditions if (st > 0) { if (st - 1 >= last_st && st - 1 <= last_en) x1 = ((uint8_t*)x)[st - 1], v1 = ((uint8_t*)v)[st - 1]; // (r-1,s-1) calculated in the last round else x1 = v1 = 0; // not calculated; set to zeros } else x1 = 0, v1 = r? q : 0; if (en >= r) ((uint8_t*)y)[r] = 0, ((uint8_t*)u)[r] = r? q : 0; // loop fission: set scores first for (t = st0; t <= en0; ++t) ((uint8_t*)s)[t] = mat[target[t] * m + qr[t + qlen - 1 - r]]; // core loop x1_ = _mm_cvtsi32_si128(x1); v1_ = _mm_cvtsi32_si128(v1); st_ = st>>4, en_ = en>>4; pr = p + r * n_col_ - st_; for (t = st_; t <= en_; ++t) { __m128i d, z, a, b, xt1, vt1, ut, tmp; z = _mm_add_epi8(_mm_load_si128(&s[t]), qe2_); xt1 = _mm_load_si128(&x[t]); // xt1 <- x[r-1][t..t+15] tmp = _mm_srli_si128(xt1, 15); // tmp <- x[r-1][t+15] xt1 = _mm_or_si128(_mm_slli_si128(xt1, 1), x1_); // xt1 <- x[r-1][t-1..t+14] x1_ = tmp; vt1 = _mm_load_si128(&v[t]); // vt1 <- v[r-1][t..t+15] tmp = _mm_srli_si128(vt1, 15); // tmp <- v[r-1][t+15] vt1 = _mm_or_si128(_mm_slli_si128(vt1, 1), v1_); // vt1 <- v[r-1][t-1..t+14] v1_ = tmp; a = _mm_add_epi8(xt1, vt1); // a <- x[r-1][t-1..t+14] + v[r-1][t-1..t+14] ut = _mm_load_si128(&u[t]); // ut <- u[t..t+15] b = _mm_add_epi8(_mm_load_si128(&y[t]), ut); // b <- y[r-1][t..t+15] + u[r-1][t..t+15] d = _mm_and_si128(_mm_cmpgt_epi8(a, z), flag1_); // d = a > z? 1 : 0 #ifdef __SSE4_1__ z = _mm_max_epi8(z, a); // z = z > a? z : a (signed) tmp = _mm_cmpgt_epi8(b, z); d = _mm_blendv_epi8(d, flag2_, tmp); // d = b > z? 2 : d #else // we need to emulate SSE4.1 intrinsics _mm_max_epi8() and _mm_blendv_epi8() z = _mm_and_si128(z, _mm_cmpgt_epi8(z, zero_)); // z = z > 0? z : 0; z = _mm_max_epu8(z, a); // z = max(z, a); this works because both are non-negative tmp = _mm_cmpgt_epi8(b, z); d = _mm_or_si128(_mm_andnot_si128(tmp, d), _mm_and_si128(tmp, flag2_)); // d = b > z? 2 : d; emulating blendv #endif z = _mm_max_epu8(z, b); // z = max(z, b); this works because both are non-negative _mm_store_si128(&u[t], _mm_sub_epi8(z, vt1)); // u[r][t..t+15] <- z - v[r-1][t-1..t+14] _mm_store_si128(&v[t], _mm_sub_epi8(z, ut)); // v[r][t..t+15] <- z - u[r-1][t..t+15] z = _mm_sub_epi8(z, q_); a = _mm_sub_epi8(a, z); b = _mm_sub_epi8(b, z); tmp = _mm_cmpgt_epi8(a, zero_); d = _mm_or_si128(d, _mm_and_si128(flag8_, tmp)); _mm_store_si128(&x[t], _mm_and_si128(a, tmp)); tmp = _mm_cmpgt_epi8(b, zero_); d = _mm_or_si128(d, _mm_and_si128(flag16_, tmp)); _mm_store_si128(&y[t], _mm_and_si128(b, tmp)); _mm_store_si128(&pr[t], d); } if (r > 0) { if (last_H0_t >= st0 && last_H0_t <= en0) H0 += ((uint8_t*)v)[last_H0_t] - (q + e); else ++last_H0_t, H0 += ((uint8_t*)u)[last_H0_t] - (q + e); } else H0 = ((uint8_t*)v)[0] - 2 * (q + e), last_H0_t = 0; last_st = st, last_en = en; //for (t = st0; t <= en0; ++t) printf("(%d,%d)\t(%d,%d,%d,%d)\t%x\n", r, t, ((uint8_t*)u)[t], ((uint8_t*)v)[t], ((uint8_t*)x)[t], ((uint8_t*)y)[t], ((uint8_t*)(p + r * n_col_))[t-st]); // for debugging } kfree(km, mem); kfree(km, qr); ksw_backtrack(km, 1, 0, 0, (uint8_t*)p, off, 0, n_col, tlen-1, qlen-1, m_cigar_, n_cigar_, cigar_); kfree(km, mem2); kfree(km, off); return H0; } #endif // __SSE2__