// Programming with pure lambda terms, with full beta and weak head reduction // default define means reduce defined term to weak-head normal form. define I = lambda x.x; define K = lambda x.lambda y.x; define S = lambda x.lambda y.lambda z.(x z (y z)); define True = K; define False = (K I); define IF = lambda b.lambda x.lambda y.(b x y); define NOT = lambda b.(IF b False True); define OR = lambda a.lambda b.(IF a True b); define AND = lambda a.lambda b.(IF a b False); define CONS = lambda a.lambda b.lambda c.(IF c a b); define CAR = lambda c.(c True); define CDR = lambda c.(c False); define lazy FIX = lambda M.((lambda x.(M (x x))) (lambda y.(M (y y)))); define Zero = False; define One = lambda f.lambda x.(f x); define PLUS = lambda m.lambda n.lambda f.lambda x.(m f (n f x)); define TIMES = lambda m.lambda n.lambda f.lambda x.(m (n f) x); //define lazy INFINITY = (lambda x.(x x)) (lambda x.(x x)); define NULL = False; define M = (CONS 2 (CONS 3 (CONS 5 (CONS 7 NULL)))); (K 1); // lambda y.1 (K 1 2); // 1 (K I); // lambda x.lambda y.y (K I 2); // lambda y.y (K I 2 3); // 3 //weak (S K I); // weak head normal form (S K I); // full normal form (S K I I); // lambda x.x (S K I 0); // 0 // booleans and if-else (IF (AND (NOT False) True) 1 2); // 1 // linked lists: (CAR (CDR (CDR M))); // 5 // arithmetic (PLUS One One); // 2 in church numeral (TIMES (PLUS One One) Zero 1 0); // 0: 2*0=0! // static scoping: let x = 1 in (let f = lambda y.x in (let x = 2 in (f 0))); // 1, since lambda calc implies static scoping. // if 2 was printed, then it's dynamically scoped // and something went horribly wrong.