/* * layer3.c: Mpeg Layer-3 audio decoder * * Copyright (C) 1999-2010 The L.A.M.E. project * * Initially written by Michael Hipp, see also AUTHORS and README. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* $Id: layer3.c,v 1.63.2.1 2012/02/11 11:03:20 robert Exp $ */ #ifdef HAVE_CONFIG_H # include #endif #include #include "common.h" #include "huffman.h" #include "lame.h" #include "machine.h" #include "encoder.h" #include "lame-analysis.h" #include "decode_i386.h" #include "layer3.h" #ifdef WITH_DMALLOC #include #endif static int gd_are_hip_tables_layer3_initialized = 0; static real ispow[8207]; static real aa_ca[8], aa_cs[8]; static real COS1[12][6]; static real win[4][36]; static real win1[4][36]; static real gainpow2[256 + 118 + 4]; static real COS9[9]; static real COS6_1, COS6_2; static real tfcos36[9]; static real tfcos12[3]; struct bandInfoStruct { short longIdx[23]; short longDiff[22]; short shortIdx[14]; short shortDiff[13]; }; static int longLimit[9][23]; static int shortLimit[9][14]; /* *INDENT-OFF* */ static const struct bandInfoStruct bandInfo[9] = { /* MPEG 1.0 */ { {0,4,8,12,16,20,24,30,36,44,52,62,74, 90,110,134,162,196,238,288,342,418,576}, {4,4,4,4,4,4,6,6,8, 8,10,12,16,20,24,28,34,42,50,54, 76,158}, {0,4*3,8*3,12*3,16*3,22*3,30*3,40*3,52*3,66*3, 84*3,106*3,136*3,192*3}, {4,4,4,4,6,8,10,12,14,18,22,30,56} } , { {0,4,8,12,16,20,24,30,36,42,50,60,72, 88,106,128,156,190,230,276,330,384,576}, {4,4,4,4,4,4,6,6,6, 8,10,12,16,18,22,28,34,40,46,54, 54,192}, {0,4*3,8*3,12*3,16*3,22*3,28*3,38*3,50*3,64*3, 80*3,100*3,126*3,192*3}, {4,4,4,4,6,6,10,12,14,16,20,26,66} } , { {0,4,8,12,16,20,24,30,36,44,54,66,82,102,126,156,194,240,296,364,448,550,576} , {4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102, 26} , {0,4*3,8*3,12*3,16*3,22*3,30*3,42*3,58*3,78*3,104*3,138*3,180*3,192*3} , {4,4,4,4,6,8,12,16,20,26,34,42,12} } , /* MPEG 2.0 */ { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576}, {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 } , {0,4*3,8*3,12*3,18*3,24*3,32*3,42*3,56*3,74*3,100*3,132*3,174*3,192*3} , {4,4,4,6,6,8,10,14,18,26,32,42,18 } } , /* docs: 332. mpg123: 330 */ { {0,6,12,18,24,30,36,44,54,66,80,96,114,136,162,194,232,278,332,394,464,540,576}, {6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36 } , {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,136*3,180*3,192*3} , {4,4,4,6,8,10,12,14,18,24,32,44,12 } } , { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576}, {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 }, {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,134*3,174*3,192*3}, {4,4,4,6,8,10,12,14,18,24,30,40,18 } } , /* MPEG 2.5 */ { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} , {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54}, {0,12,24,36,54,78,108,144,186,240,312,402,522,576}, {4,4,4,6,8,10,12,14,18,24,30,40,18} }, { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} , {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54}, {0,12,24,36,54,78,108,144,186,240,312,402,522,576}, {4,4,4,6,8,10,12,14,18,24,30,40,18} }, { {0,12,24,36,48,60,72,88,108,132,160,192,232,280,336,400,476,566,568,570,572,574,576}, {12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2}, {0, 24, 48, 72,108,156,216,288,372,480,486,492,498,576}, {8,8,8,12,16,20,24,28,36,2,2,2,26} } , }; /* *INDENT-ON* */ static int mapbuf0[9][152]; static int mapbuf1[9][156]; static int mapbuf2[9][44]; static int *map[9][3]; static int *mapend[9][3]; static unsigned int n_slen2[512]; /* MPEG 2.0 slen for 'normal' mode */ static unsigned int i_slen2[256]; /* MPEG 2.0 slen for intensity stereo */ static real tan1_1[16], tan2_1[16], tan1_2[16], tan2_2[16]; static real pow1_1[2][16], pow2_1[2][16], pow1_2[2][16], pow2_2[2][16]; static unsigned int get1bit(PMPSTR mp) { unsigned char rval; rval = *mp->wordpointer << mp->bitindex; mp->bitindex++; mp->wordpointer += (mp->bitindex >> 3); mp->bitindex &= 7; return rval >> 7; } /* * init tables for layer-3 */ void hip_init_tables_layer3(void) { int i, j, k; if (gd_are_hip_tables_layer3_initialized) { return; } gd_are_hip_tables_layer3_initialized = 1; for (i = -256; i < 118 + 4; i++) gainpow2[i + 256] = pow((double) 2.0, -0.25 * (double) (i + 210)); for (i = 0; i < 8207; i++) ispow[i] = pow((double) i, (double) 4.0 / 3.0); for (i = 0; i < 8; i++) { static const double Ci[8] = { -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 }; double sq = sqrt(1.0 + Ci[i] * Ci[i]); aa_cs[i] = 1.0 / sq; aa_ca[i] = Ci[i] / sq; } for (i = 0; i < 18; i++) { win[0][i] = win[1][i] = 0.5 * sin(M_PI / 72.0 * (double) (2 * (i + 0) + 1)) / cos(M_PI * (double) (2 * (i + 0) + 19) / 72.0); win[0][i + 18] = win[3][i + 18] = 0.5 * sin(M_PI / 72.0 * (double) (2 * (i + 18) + 1)) / cos(M_PI * (double) (2 * (i + 18) + 19) / 72.0); } for (i = 0; i < 6; i++) { win[1][i + 18] = 0.5 / cos(M_PI * (double) (2 * (i + 18) + 19) / 72.0); win[3][i + 12] = 0.5 / cos(M_PI * (double) (2 * (i + 12) + 19) / 72.0); win[1][i + 24] = 0.5 * sin(M_PI / 24.0 * (double) (2 * i + 13)) / cos(M_PI * (double) (2 * (i + 24) + 19) / 72.0); win[1][i + 30] = win[3][i] = 0.0; win[3][i + 6] = 0.5 * sin(M_PI / 24.0 * (double) (2 * i + 1)) / cos(M_PI * (double) (2 * (i + 6) + 19) / 72.0); } for (i = 0; i < 9; i++) COS9[i] = cos(M_PI / 18.0 * (double) i); for (i = 0; i < 9; i++) tfcos36[i] = 0.5 / cos(M_PI * (double) (i * 2 + 1) / 36.0); for (i = 0; i < 3; i++) tfcos12[i] = 0.5 / cos(M_PI * (double) (i * 2 + 1) / 12.0); COS6_1 = cos(M_PI / 6.0 * (double) 1); COS6_2 = cos(M_PI / 6.0 * (double) 2); for (i = 0; i < 12; i++) { win[2][i] = 0.5 * sin(M_PI / 24.0 * (double) (2 * i + 1)) / cos(M_PI * (double) (2 * i + 7) / 24.0); for (j = 0; j < 6; j++) COS1[i][j] = cos(M_PI / 24.0 * (double) ((2 * i + 7) * (2 * j + 1))); } for (j = 0; j < 4; j++) { static int const len[4] = { 36, 36, 12, 36 }; for (i = 0; i < len[j]; i += 2) win1[j][i] = +win[j][i]; for (i = 1; i < len[j]; i += 2) win1[j][i] = -win[j][i]; } for (i = 0; i < 16; i++) { double t = tan((double) i * M_PI / 12.0); tan1_1[i] = t / (1.0 + t); tan2_1[i] = 1.0 / (1.0 + t); tan1_2[i] = M_SQRT2 * t / (1.0 + t); tan2_2[i] = M_SQRT2 / (1.0 + t); for (j = 0; j < 2; j++) { double base = pow(2.0, -0.25 * (j + 1.0)); double p1 = 1.0, p2 = 1.0; if (i > 0) { if (i & 1) p1 = pow(base, (i + 1.0) * 0.5); else p2 = pow(base, i * 0.5); } pow1_1[j][i] = p1; pow2_1[j][i] = p2; pow1_2[j][i] = M_SQRT2 * p1; pow2_2[j][i] = M_SQRT2 * p2; } } for (j = 0; j < 9; j++) { struct bandInfoStruct const *bi = (struct bandInfoStruct const *) &bandInfo[j]; int *mp; int cb, lwin; short const *bdf; mp = map[j][0] = mapbuf0[j]; bdf = bi->longDiff; for (i = 0, cb = 0; cb < 8; cb++, i += *bdf++) { *mp++ = (*bdf) >> 1; *mp++ = i; *mp++ = 3; *mp++ = cb; } bdf = bi->shortDiff + 3; for (cb = 3; cb < 13; cb++) { int l = (*bdf++) >> 1; for (lwin = 0; lwin < 3; lwin++) { *mp++ = l; *mp++ = i + lwin; *mp++ = lwin; *mp++ = cb; } i += 6 * l; } mapend[j][0] = mp; mp = map[j][1] = mapbuf1[j]; bdf = bi->shortDiff + 0; for (i = 0, cb = 0; cb < 13; cb++) { int l = (*bdf++) >> 1; for (lwin = 0; lwin < 3; lwin++) { *mp++ = l; *mp++ = i + lwin; *mp++ = lwin; *mp++ = cb; } i += 6 * l; } mapend[j][1] = mp; mp = map[j][2] = mapbuf2[j]; bdf = bi->longDiff; for (cb = 0; cb < 22; cb++) { *mp++ = (*bdf++) >> 1; *mp++ = cb; } mapend[j][2] = mp; } for (j = 0; j < 9; j++) { for (i = 0; i < 23; i++) { longLimit[j][i] = (bandInfo[j].longIdx[i] - 1 + 8) / 18 + 1; if (longLimit[j][i] > SBLIMIT) longLimit[j][i] = SBLIMIT; } for (i = 0; i < 14; i++) { shortLimit[j][i] = (bandInfo[j].shortIdx[i] - 1) / 18 + 1; if (shortLimit[j][i] > SBLIMIT) shortLimit[j][i] = SBLIMIT; } } for (i = 0; i < 5; i++) { for (j = 0; j < 6; j++) { for (k = 0; k < 6; k++) { int n = k + j * 6 + i * 36; i_slen2[n] = i | (j << 3) | (k << 6) | (3 << 12); } } } for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { for (k = 0; k < 4; k++) { int n = k + j * 4 + i * 16; i_slen2[n + 180] = i | (j << 3) | (k << 6) | (4 << 12); } } } for (i = 0; i < 4; i++) { for (j = 0; j < 3; j++) { int n = j + i * 3; i_slen2[n + 244] = i | (j << 3) | (5 << 12); n_slen2[n + 500] = i | (j << 3) | (2 << 12) | (1 << 15); } } for (i = 0; i < 5; i++) { for (j = 0; j < 5; j++) { for (k = 0; k < 4; k++) { int l; for (l = 0; l < 4; l++) { int n = l + k * 4 + j * 16 + i * 80; n_slen2[n] = i | (j << 3) | (k << 6) | (l << 9) | (0 << 12); } } } } for (i = 0; i < 5; i++) { for (j = 0; j < 5; j++) { for (k = 0; k < 4; k++) { int n = k + j * 4 + i * 20; n_slen2[n + 400] = i | (j << 3) | (k << 6) | (1 << 12); } } } } /* * read additional side information */ static void III_get_side_info_1(PMPSTR mp, int stereo, int ms_stereo, long sfreq, int single) { int ch, gr; int powdiff = (single == 3) ? 4 : 0; mp->sideinfo.main_data_begin = getbits(mp, 9); if (stereo == 1) mp->sideinfo.private_bits = getbits_fast(mp, 5); else mp->sideinfo.private_bits = getbits_fast(mp, 3); for (ch = 0; ch < stereo; ch++) { mp->sideinfo.ch[ch].gr[0].scfsi = -1; mp->sideinfo.ch[ch].gr[1].scfsi = getbits_fast(mp, 4); } for (gr = 0; gr < 2; gr++) { for (ch = 0; ch < stereo; ch++) { struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]); gr_infos->part2_3_length = getbits(mp, 12); gr_infos->big_values = getbits_fast(mp, 9); if (gr_infos->big_values > 288) { lame_report_fnc(mp->report_err, "big_values too large! %i\n", gr_infos->big_values); gr_infos->big_values = 288; } { unsigned int qss = getbits_fast(mp, 8); gr_infos->pow2gain = gainpow2 + 256 - qss + powdiff; if (mp->pinfo != NULL) { mp->pinfo->qss[gr][ch] = qss; } } if (ms_stereo) gr_infos->pow2gain += 2; gr_infos->scalefac_compress = getbits_fast(mp, 4); /* window-switching flag == 1 for block_Type != 0 .. and block-type == 0 -> win-sw-flag = 0 */ if (get1bit(mp)) { int i; gr_infos->block_type = getbits_fast(mp, 2); gr_infos->mixed_block_flag = get1bit(mp); gr_infos->table_select[0] = getbits_fast(mp, 5); gr_infos->table_select[1] = getbits_fast(mp, 5); /* * table_select[2] not needed, because there is no region2, * but to satisfy some verifications tools we set it either. */ gr_infos->table_select[2] = 0; for (i = 0; i < 3; i++) { unsigned int sbg = (getbits_fast(mp, 3) << 3); gr_infos->full_gain[i] = gr_infos->pow2gain + sbg; if (mp->pinfo != NULL) mp->pinfo->sub_gain[gr][ch][i] = sbg / 8; } if (gr_infos->block_type == 0) { lame_report_fnc(mp->report_err, "Blocktype == 0 and window-switching == 1 not allowed.\n"); /* error seems to be very good recoverable, so don't exit */ /* exit(1); */ } /* region_count/start parameters are implicit in this case. */ gr_infos->region1start = 36 >> 1; gr_infos->region2start = 576 >> 1; } else { unsigned int i, r0c, r1c, region0index, region1index; for (i = 0; i < 3; i++) gr_infos->table_select[i] = getbits_fast(mp, 5); r0c = getbits_fast(mp, 4); r1c = getbits_fast(mp, 3); region0index = r0c+1; if (region0index > 22) { region0index = 22; lame_report_fnc(mp->report_err, "region0index > 22\n"); } region1index = r0c+1 + r1c+1; if (region1index > 22) { region1index = 22; lame_report_fnc(mp->report_err, "region1index > 22\n"); } gr_infos->region1start = bandInfo[sfreq].longIdx[region0index] >> 1; gr_infos->region2start = bandInfo[sfreq].longIdx[region1index] >> 1; gr_infos->block_type = 0; gr_infos->mixed_block_flag = 0; } gr_infos->preflag = get1bit(mp); gr_infos->scalefac_scale = get1bit(mp); gr_infos->count1table_select = get1bit(mp); } } } /* * Side Info for MPEG 2.0 / LSF */ static void III_get_side_info_2(PMPSTR mp, int stereo, int ms_stereo, long sfreq, int single) { int ch; int powdiff = (single == 3) ? 4 : 0; mp->sideinfo.main_data_begin = getbits(mp, 8); if (stereo == 1) mp->sideinfo.private_bits = get1bit(mp); else mp->sideinfo.private_bits = getbits_fast(mp, 2); for (ch = 0; ch < stereo; ch++) { struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[0]); unsigned int qss; gr_infos->part2_3_length = getbits(mp, 12); gr_infos->big_values = getbits_fast(mp, 9); if (gr_infos->big_values > 288) { lame_report_fnc(mp->report_err, "big_values too large! %i\n", gr_infos->big_values); gr_infos->big_values = 288; } qss = getbits_fast(mp, 8); gr_infos->pow2gain = gainpow2 + 256 - qss + powdiff; if (mp->pinfo != NULL) { mp->pinfo->qss[0][ch] = qss; } if (ms_stereo) gr_infos->pow2gain += 2; gr_infos->scalefac_compress = getbits(mp, 9); /* window-switching flag == 1 for block_Type != 0 .. and block-type == 0 -> win-sw-flag = 0 */ if (get1bit(mp)) { int i; gr_infos->block_type = getbits_fast(mp, 2); gr_infos->mixed_block_flag = get1bit(mp); gr_infos->table_select[0] = getbits_fast(mp, 5); gr_infos->table_select[1] = getbits_fast(mp, 5); /* * table_select[2] not needed, because there is no region2, * but to satisfy some verifications tools we set it either. */ gr_infos->table_select[2] = 0; for (i = 0; i < 3; i++) { unsigned int sbg = (getbits_fast(mp, 3) << 3); gr_infos->full_gain[i] = gr_infos->pow2gain + sbg; if (mp->pinfo != NULL) mp->pinfo->sub_gain[0][ch][i] = sbg / 8; } if (gr_infos->block_type == 0) { lame_report_fnc(mp->report_err, "Blocktype == 0 and window-switching == 1 not allowed.\n"); /* error seems to be very good recoverable, so don't exit */ /* exit(1); */ } /* region_count/start parameters are implicit in this case. */ /* check this again! */ if (gr_infos->block_type == 2) { if (sfreq == 8) gr_infos->region1start = 36; else gr_infos->region1start = 36 >> 1; } else if (sfreq == 8) /* check this for 2.5 and sfreq=8 */ gr_infos->region1start = 108 >> 1; else gr_infos->region1start = 54 >> 1; gr_infos->region2start = 576 >> 1; } else { unsigned int i, r0c, r1c, region0index, region1index; for (i = 0; i < 3; i++) gr_infos->table_select[i] = getbits_fast(mp, 5); r0c = getbits_fast(mp, 4); r1c = getbits_fast(mp, 3); region0index = r0c+1; if (region0index > 22) { region0index = 22; lame_report_fnc(mp->report_err, "region0index > 22\n"); } region1index = r0c+1 + r1c+1; if (region1index > 22) { region1index = 22; lame_report_fnc(mp->report_err, "region1index > 22\n"); } gr_infos->region1start = bandInfo[sfreq].longIdx[region0index] >> 1; gr_infos->region2start = bandInfo[sfreq].longIdx[region1index] >> 1; gr_infos->block_type = 0; gr_infos->mixed_block_flag = 0; } gr_infos->scalefac_scale = get1bit(mp); gr_infos->count1table_select = get1bit(mp); } } /* * read scalefactors */ static int III_get_scale_factors_1(PMPSTR mp, int *scf, struct gr_info_s *gr_infos) { static const unsigned char slen[2][16] = { {0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4}, {0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3} }; int numbits; int num0 = slen[0][gr_infos->scalefac_compress]; int num1 = slen[1][gr_infos->scalefac_compress]; if (gr_infos->block_type == 2) { int i = 18; numbits = (num0 + num1) * 18; if (gr_infos->mixed_block_flag) { for (i = 8; i; i--) *scf++ = getbits_fast(mp, num0); i = 9; numbits -= num0; /* num0 * 17 + num1 * 18 */ } for (; i; i--) *scf++ = getbits_fast(mp, num0); for (i = 18; i; i--) *scf++ = getbits_fast(mp, num1); *scf++ = 0; *scf++ = 0; *scf++ = 0; /* short[13][0..2] = 0 */ } else { int i; int scfsi = gr_infos->scfsi; if (scfsi < 0) { /* scfsi < 0 => granule == 0 */ for (i = 11; i; i--) *scf++ = getbits_fast(mp, num0); for (i = 10; i; i--) *scf++ = getbits_fast(mp, num1); numbits = (num0 + num1) * 10 + num0; } else { numbits = 0; if (!(scfsi & 0x8)) { for (i = 6; i; i--) *scf++ = getbits_fast(mp, num0); numbits += num0 * 6; } else { scf += 6; } if (!(scfsi & 0x4)) { for (i = 5; i; i--) *scf++ = getbits_fast(mp, num0); numbits += num0 * 5; } else { scf += 5; } if (!(scfsi & 0x2)) { for (i = 5; i; i--) *scf++ = getbits_fast(mp, num1); numbits += num1 * 5; } else { scf += 5; } if (!(scfsi & 0x1)) { for (i = 5; i; i--) *scf++ = getbits_fast(mp, num1); numbits += num1 * 5; } else { scf += 5; } } *scf++ = 0; /* no l[21] in original sources */ } return numbits; } static int III_get_scale_factors_2(PMPSTR mp, int *scf, struct gr_info_s *gr_infos, int i_stereo) { unsigned char const *pnt; int i, j; unsigned int slen; int n = 0; int numbits = 0; /* *INDENT-OFF* */ static const unsigned char stab[3][6][4] = { { { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} , { 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0} } , { { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} , {12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } , { { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} , { 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0} } }; /* *INDENT-ON* */ if (i_stereo) /* i_stereo AND second channel -> do_layer3() checks this */ slen = i_slen2[gr_infos->scalefac_compress >> 1]; else slen = n_slen2[gr_infos->scalefac_compress]; gr_infos->preflag = (slen >> 15) & 0x1; n = 0; if (gr_infos->block_type == 2) { n++; if (gr_infos->mixed_block_flag) n++; } pnt = (unsigned char const *) stab[n][(slen >> 12) & 0x7]; for (i = 0; i < 4; i++) { int num = slen & 0x7; slen >>= 3; if (num) { for (j = 0; j < (int) (pnt[i]); j++) *scf++ = getbits_fast(mp, num); numbits += pnt[i] * num; } else { for (j = 0; j < (int) (pnt[i]); j++) *scf++ = 0; } } n = (n << 1) + 1; for (i = 0; i < n; i++) *scf++ = 0; return numbits; } /* *INDENT-OFF* */ static const int pretab1 [22] = {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,2,0}; /* char enough ? */ static const int pretab2 [22] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /* *INDENT-ON* */ /* * don't forget to apply the same changes to III_dequantize_sample_ms() !!! */ static int III_dequantize_sample(PMPSTR mp, real xr[SBLIMIT][SSLIMIT], int *scf, struct gr_info_s *gr_infos, int sfreq, int part2bits) { int shift = 1 + gr_infos->scalefac_scale; real *xrpnt = (real *) xr; int l[3], l3; int part2remain = gr_infos->part2_3_length - part2bits; int *me; /* lame_report_fnc(mp->report_dbg,"part2remain = %d, gr_infos->part2_3_length = %d, part2bits = %d\n", part2remain, gr_infos->part2_3_length, part2bits); */ { int i; for (i = (&xr[SBLIMIT][0] - xrpnt) >> 1; i > 0; i--) { *xrpnt++ = 0.0; *xrpnt++ = 0.0; } xrpnt = (real *) xr; } { int bv = gr_infos->big_values; int region1 = gr_infos->region1start; int region2 = gr_infos->region2start; l3 = ((576 >> 1) - bv) >> 1; /* * we may lose the 'odd' bit here !! * check this later again */ if (bv <= region1) { l[0] = bv; l[1] = 0; l[2] = 0; } else { l[0] = region1; if (bv <= region2) { l[1] = bv - l[0]; l[2] = 0; } else { l[1] = region2 - l[0]; l[2] = bv - region2; } } } /* MDH crash fix */ { int i; for (i = 0; i < 3; i++) { if (l[i] < 0) { lame_report_fnc(mp->report_err, "hip: Bogus region length (%d)\n", l[i]); l[i] = 0; } } } /* end MDH crash fix */ if (gr_infos->block_type == 2) { /* * decoding with short or mixed mode BandIndex table */ int i, max[4]; int step = 0, lwin = 0, cb = 0; real v = 0.0; int *m, mc; if (gr_infos->mixed_block_flag) { max[3] = -1; max[0] = max[1] = max[2] = 2; m = map[sfreq][0]; me = mapend[sfreq][0]; } else { max[0] = max[1] = max[2] = max[3] = -1; /* max[3] not really needed in this case */ m = map[sfreq][1]; me = mapend[sfreq][1]; } mc = 0; for (i = 0; i < 2; i++) { int lp = l[i]; struct newhuff const *h = (struct newhuff const *) (ht + gr_infos->table_select[i]); for (; lp; lp--, mc--) { int x, y; if ((!mc)) { mc = *m++; xrpnt = ((real *) xr) + (*m++); lwin = *m++; cb = *m++; if (lwin == 3) { v = gr_infos->pow2gain[(*scf++) << shift]; step = 1; } else { v = gr_infos->full_gain[lwin][(*scf++) << shift]; step = 3; } } { short const *val = (short const *) h->table; while ((y = *val++) < 0) { if (get1bit(mp)) val -= y; part2remain--; } x = y >> 4; y &= 0xf; } if (x == 15) { max[lwin] = cb; part2remain -= h->linbits + 1; x += getbits(mp, (int) h->linbits); if (get1bit(mp)) *xrpnt = -ispow[x] * v; else *xrpnt = ispow[x] * v; } else if (x) { max[lwin] = cb; if (get1bit(mp)) *xrpnt = -ispow[x] * v; else *xrpnt = ispow[x] * v; part2remain--; } else *xrpnt = 0.0; xrpnt += step; if (y == 15) { max[lwin] = cb; part2remain -= h->linbits + 1; y += getbits(mp, (int) h->linbits); if (get1bit(mp)) *xrpnt = -ispow[y] * v; else *xrpnt = ispow[y] * v; } else if (y) { max[lwin] = cb; if (get1bit(mp)) *xrpnt = -ispow[y] * v; else *xrpnt = ispow[y] * v; part2remain--; } else *xrpnt = 0.0; xrpnt += step; } } for (; l3 && (part2remain > 0); l3--) { struct newhuff const *h = (struct newhuff const *) (htc + gr_infos->count1table_select); short const *val = (short const *) h->table; short a; while ((a = *val++) < 0) { part2remain--; if (part2remain < 0) { part2remain++; a = 0; break; } if (get1bit(mp)) val -= a; } for (i = 0; i < 4; i++) { if (!(i & 1)) { if (!mc) { mc = *m++; xrpnt = ((real *) xr) + (*m++); lwin = *m++; cb = *m++; if (lwin == 3) { v = gr_infos->pow2gain[(*scf++) << shift]; step = 1; } else { v = gr_infos->full_gain[lwin][(*scf++) << shift]; step = 3; } } mc--; } if ((a & (0x8 >> i))) { max[lwin] = cb; part2remain--; if (part2remain < 0) { part2remain++; break; } if (get1bit(mp)) *xrpnt = -v; else *xrpnt = v; } else *xrpnt = 0.0; xrpnt += step; } } while (m < me) { if (!mc) { mc = *m++; xrpnt = ((real *) xr) + *m++; if ((*m++) == 3) step = 1; else step = 3; m++; /* cb */ } mc--; *xrpnt = 0.0; xrpnt += step; *xrpnt = 0.0; xrpnt += step; /* we could add a little opt. here: * if we finished a band for window 3 or a long band * further bands could copied in a simple loop without a * special 'map' decoding */ } gr_infos->maxband[0] = max[0] + 1; gr_infos->maxband[1] = max[1] + 1; gr_infos->maxband[2] = max[2] + 1; gr_infos->maxbandl = max[3] + 1; { int rmax = max[0] > max[1] ? max[0] : max[1]; rmax = (rmax > max[2] ? rmax : max[2]) + 1; gr_infos->maxb = rmax ? shortLimit[sfreq][rmax] : longLimit[sfreq][max[3] + 1]; } } else { /* * decoding with 'long' BandIndex table (block_type != 2) */ int const *pretab = (int const *) (gr_infos->preflag ? pretab1 : pretab2); int i, max = -1; int cb = 0; int *m = map[sfreq][2]; real v = 0.0; int mc = 0; /* * long hash table values */ for (i = 0; i < 3; i++) { int lp = l[i]; struct newhuff const *h = (struct newhuff const *) (ht + gr_infos->table_select[i]); for (; lp; lp--, mc--) { int x, y; if (!mc) { mc = *m++; v = gr_infos->pow2gain[((*scf++) + (*pretab++)) << shift]; cb = *m++; } { short const *val = (short const *) h->table; while ((y = *val++) < 0) { if (get1bit(mp)) val -= y; part2remain--; } x = y >> 4; y &= 0xf; } if (x == 15) { max = cb; part2remain -= h->linbits + 1; x += getbits(mp, (int) h->linbits); if (get1bit(mp)) *xrpnt++ = -ispow[x] * v; else *xrpnt++ = ispow[x] * v; } else if (x) { max = cb; if (get1bit(mp)) *xrpnt++ = -ispow[x] * v; else *xrpnt++ = ispow[x] * v; part2remain--; } else *xrpnt++ = 0.0; if (y == 15) { max = cb; part2remain -= h->linbits + 1; y += getbits(mp, (int) h->linbits); if (get1bit(mp)) *xrpnt++ = -ispow[y] * v; else *xrpnt++ = ispow[y] * v; } else if (y) { max = cb; if (get1bit(mp)) *xrpnt++ = -ispow[y] * v; else *xrpnt++ = ispow[y] * v; part2remain--; } else *xrpnt++ = 0.0; } } /* * short (count1table) values */ for (; l3 && (part2remain > 0); l3--) { struct newhuff const *h = (struct newhuff const *) (htc + gr_infos->count1table_select); short const *val = (short const *) h->table; short a; while ((a = *val++) < 0) { part2remain--; if (part2remain < 0) { part2remain++; a = 0; break; } if (get1bit(mp)) val -= a; } for (i = 0; i < 4; i++) { if (!(i & 1)) { if (!mc) { mc = *m++; cb = *m++; v = gr_infos->pow2gain[((*scf++) + (*pretab++)) << shift]; } mc--; } if ((a & (0x8 >> i))) { max = cb; part2remain--; if (part2remain < 0) { part2remain++; break; } if (get1bit(mp)) *xrpnt++ = -v; else *xrpnt++ = v; } else *xrpnt++ = 0.0; } } /* * zero part */ for (i = (&xr[SBLIMIT][0] - xrpnt) >> 1; i; i--) { *xrpnt++ = 0.0; *xrpnt++ = 0.0; } gr_infos->maxbandl = max + 1; gr_infos->maxb = longLimit[sfreq][gr_infos->maxbandl]; } while (part2remain > 16) { getbits(mp, 16); /* Dismiss stuffing Bits */ part2remain -= 16; } if (part2remain > 0) getbits(mp, part2remain); else if (part2remain < 0) { lame_report_fnc(mp->report_err, "hip: Can't rewind stream by %d bits!\n", -part2remain); return 1; /* -> error */ } return 0; } /* * III_stereo: calculate real channel values for Joint-I-Stereo-mode */ static void III_i_stereo(real xr_buf[2][SBLIMIT][SSLIMIT], int *scalefac, struct gr_info_s *gr_infos, int sfreq, int ms_stereo, int lsf) { real(*xr)[SBLIMIT * SSLIMIT] = (real(*)[SBLIMIT * SSLIMIT]) xr_buf; struct bandInfoStruct const *bi = (struct bandInfoStruct const *) &bandInfo[sfreq]; real *tabl1, *tabl2; if (lsf) { int p = gr_infos->scalefac_compress & 0x1; if (ms_stereo) { tabl1 = pow1_2[p]; tabl2 = pow2_2[p]; } else { tabl1 = pow1_1[p]; tabl2 = pow2_1[p]; } } else { if (ms_stereo) { tabl1 = tan1_2; tabl2 = tan2_2; } else { tabl1 = tan1_1; tabl2 = tan2_1; } } if (gr_infos->block_type == 2) { int lwin, do_l = 0; if (gr_infos->mixed_block_flag) do_l = 1; for (lwin = 0; lwin < 3; lwin++) { /* process each window */ /* get first band with zero values */ int is_p, sb, idx, sfb = gr_infos->maxband[lwin]; /* sfb is minimal 3 for mixed mode */ if (sfb > 3) do_l = 0; for (; sfb < 12; sfb++) { is_p = scalefac[sfb * 3 + lwin - gr_infos->mixed_block_flag]; /* scale: 0-15 */ if (is_p != 7) { real t1, t2; sb = bi->shortDiff[sfb]; idx = bi->shortIdx[sfb] + lwin; t1 = tabl1[is_p]; t2 = tabl2[is_p]; for (; sb > 0; sb--, idx += 3) { real v = xr[0][idx]; xr[0][idx] = v * t1; xr[1][idx] = v * t2; } } } #if 1 /* in the original: copy 10 to 11 , here: copy 11 to 12 maybe still wrong??? (copy 12 to 13?) */ is_p = scalefac[11 * 3 + lwin - gr_infos->mixed_block_flag]; /* scale: 0-15 */ sb = bi->shortDiff[12]; idx = bi->shortIdx[12] + lwin; #else is_p = scalefac[10 * 3 + lwin - gr_infos->mixed_block_flag]; /* scale: 0-15 */ sb = bi->shortDiff[11]; idx = bi->shortIdx[11] + lwin; #endif if (is_p != 7) { real t1, t2; t1 = tabl1[is_p]; t2 = tabl2[is_p]; for (; sb > 0; sb--, idx += 3) { real v = xr[0][idx]; xr[0][idx] = v * t1; xr[1][idx] = v * t2; } } } /* end for(lwin; .. ; . ) */ if (do_l) { /* also check l-part, if ALL bands in the three windows are 'empty' * and mode = mixed_mode */ int sfb = gr_infos->maxbandl; int idx = bi->longIdx[sfb]; for (; sfb < 8; sfb++) { int sb = bi->longDiff[sfb]; int is_p = scalefac[sfb]; /* scale: 0-15 */ if (is_p != 7) { real t1, t2; t1 = tabl1[is_p]; t2 = tabl2[is_p]; for (; sb > 0; sb--, idx++) { real v = xr[0][idx]; xr[0][idx] = v * t1; xr[1][idx] = v * t2; } } else idx += sb; } } } else { /* ((gr_infos->block_type != 2)) */ int sfb = gr_infos->maxbandl; int is_p, idx = bi->longIdx[sfb]; for (; sfb < 21; sfb++) { int sb = bi->longDiff[sfb]; is_p = scalefac[sfb]; /* scale: 0-15 */ if (is_p != 7) { real t1, t2; t1 = tabl1[is_p]; t2 = tabl2[is_p]; for (; sb > 0; sb--, idx++) { real v = xr[0][idx]; xr[0][idx] = v * t1; xr[1][idx] = v * t2; } } else idx += sb; } is_p = scalefac[20]; /* copy l-band 20 to l-band 21 */ if (is_p != 7) { int sb; real t1 = tabl1[is_p], t2 = tabl2[is_p]; for (sb = bi->longDiff[21]; sb > 0; sb--, idx++) { real v = xr[0][idx]; xr[0][idx] = v * t1; xr[1][idx] = v * t2; } } } /* ... */ } static void III_antialias(real xr[SBLIMIT][SSLIMIT], struct gr_info_s *gr_infos) { int sblim; if (gr_infos->block_type == 2) { if (!gr_infos->mixed_block_flag) return; sblim = 1; } else { sblim = gr_infos->maxb - 1; } /* 31 alias-reduction operations between each pair of sub-bands */ /* with 8 butterflies between each pair */ { int sb; real *xr1 = (real *) xr[1]; for (sb = sblim; sb; sb--, xr1 += 10) { int ss; real *cs = aa_cs, *ca = aa_ca; real *xr2 = xr1; for (ss = 7; ss >= 0; ss--) { /* upper and lower butterfly inputs */ real bu = *--xr2, bd = *xr1; *xr2 = (bu * (*cs)) - (bd * (*ca)); *xr1++ = (bd * (*cs++)) + (bu * (*ca++)); } } } } /* *INDENT-OFF* */ /* DCT insipired by Jeff Tsay's DCT from the maplay package this is an optimized version with manual unroll. References: [1] S. Winograd: "On Computing the Discrete Fourier Transform", Mathematics of Computation, Volume 32, Number 141, January 1978, Pages 175-199 */ static void dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf) { { real *in = inbuf; in[17]+=in[16]; in[16]+=in[15]; in[15]+=in[14]; in[14]+=in[13]; in[13]+=in[12]; in[12]+=in[11]; in[11]+=in[10]; in[10]+=in[9]; in[9] +=in[8]; in[8] +=in[7]; in[7] +=in[6]; in[6] +=in[5]; in[5] +=in[4]; in[4] +=in[3]; in[3] +=in[2]; in[2] +=in[1]; in[1] +=in[0]; in[17]+=in[15]; in[15]+=in[13]; in[13]+=in[11]; in[11]+=in[9]; in[9] +=in[7]; in[7] +=in[5]; in[5] +=in[3]; in[3] +=in[1]; { #define MACRO0(v) { \ real tmp; \ out2[9+(v)] = (tmp = sum0 + sum1) * w[27+(v)]; \ out2[8-(v)] = tmp * w[26-(v)]; } \ sum0 -= sum1; \ ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \ ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)]; #define MACRO1(v) { \ real sum0,sum1; \ sum0 = tmp1a + tmp2a; \ sum1 = (tmp1b + tmp2b) * tfcos36[(v)]; \ MACRO0(v); } #define MACRO2(v) { \ real sum0,sum1; \ sum0 = tmp2a - tmp1a; \ sum1 = (tmp2b - tmp1b) * tfcos36[(v)]; \ MACRO0(v); } const real *c = COS9; real *out2 = o2; real *w = wintab; real *out1 = o1; real *ts = tsbuf; real ta33,ta66,tb33,tb66; ta33 = in[2*3+0] * c[3]; ta66 = in[2*6+0] * c[6]; tb33 = in[2*3+1] * c[3]; tb66 = in[2*6+1] * c[6]; { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = in[2*1+0] * c[1] + ta33 + in[2*5+0] * c[5] + in[2*7+0] * c[7]; tmp1b = in[2*1+1] * c[1] + tb33 + in[2*5+1] * c[5] + in[2*7+1] * c[7]; tmp2a = in[2*0+0] + in[2*2+0] * c[2] + in[2*4+0] * c[4] + ta66 + in[2*8+0] * c[8]; tmp2b = in[2*0+1] + in[2*2+1] * c[2] + in[2*4+1] * c[4] + tb66 + in[2*8+1] * c[8]; MACRO1(0); MACRO2(8); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = ( in[2*1+0] - in[2*5+0] - in[2*7+0] ) * c[3]; tmp1b = ( in[2*1+1] - in[2*5+1] - in[2*7+1] ) * c[3]; tmp2a = ( in[2*2+0] - in[2*4+0] - in[2*8+0] ) * c[6] - in[2*6+0] + in[2*0+0]; tmp2b = ( in[2*2+1] - in[2*4+1] - in[2*8+1] ) * c[6] - in[2*6+1] + in[2*0+1]; MACRO1(1); MACRO2(7); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = in[2*1+0] * c[5] - ta33 - in[2*5+0] * c[7] + in[2*7+0] * c[1]; tmp1b = in[2*1+1] * c[5] - tb33 - in[2*5+1] * c[7] + in[2*7+1] * c[1]; tmp2a = in[2*0+0] - in[2*2+0] * c[8] - in[2*4+0] * c[2] + ta66 + in[2*8+0] * c[4]; tmp2b = in[2*0+1] - in[2*2+1] * c[8] - in[2*4+1] * c[2] + tb66 + in[2*8+1] * c[4]; MACRO1(2); MACRO2(6); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = in[2*1+0] * c[7] - ta33 + in[2*5+0] * c[1] - in[2*7+0] * c[5]; tmp1b = in[2*1+1] * c[7] - tb33 + in[2*5+1] * c[1] - in[2*7+1] * c[5]; tmp2a = in[2*0+0] - in[2*2+0] * c[4] + in[2*4+0] * c[8] + ta66 - in[2*8+0] * c[2]; tmp2b = in[2*0+1] - in[2*2+1] * c[4] + in[2*4+1] * c[8] + tb66 - in[2*8+1] * c[2]; MACRO1(3); MACRO2(5); } { real sum0,sum1; sum0 = in[2*0+0] - in[2*2+0] + in[2*4+0] - in[2*6+0] + in[2*8+0]; sum1 = (in[2*0+1] - in[2*2+1] + in[2*4+1] - in[2*6+1] + in[2*8+1] ) * tfcos36[4]; MACRO0(4); } } } } /* * new DCT12 */ static void dct12(real *in,real *rawout1,real *rawout2,real *wi,real *ts) { #define DCT12_PART1 \ in5 = in[5*3]; \ in5 += (in4 = in[4*3]); \ in4 += (in3 = in[3*3]); \ in3 += (in2 = in[2*3]); \ in2 += (in1 = in[1*3]); \ in1 += (in0 = in[0*3]); \ \ in5 += in3; in3 += in1; \ \ in2 *= COS6_1; \ in3 *= COS6_1; \ #define DCT12_PART2 \ in0 += in4 * COS6_2; \ \ in4 = in0 + in2; \ in0 -= in2; \ \ in1 += in5 * COS6_2; \ \ in5 = (in1 + in3) * tfcos12[0]; \ in1 = (in1 - in3) * tfcos12[2]; \ \ in3 = in4 + in5; \ in4 -= in5; \ \ in2 = in0 + in1; \ in0 -= in1; { real in0,in1,in2,in3,in4,in5; real *out1 = rawout1; ts[SBLIMIT*0] = out1[0]; ts[SBLIMIT*1] = out1[1]; ts[SBLIMIT*2] = out1[2]; ts[SBLIMIT*3] = out1[3]; ts[SBLIMIT*4] = out1[4]; ts[SBLIMIT*5] = out1[5]; DCT12_PART1 { real tmp0,tmp1 = (in0 - in4); { real tmp2 = (in1 - in5) * tfcos12[1]; tmp0 = tmp1 + tmp2; tmp1 -= tmp2; } ts[(17-1)*SBLIMIT] = out1[17-1] + tmp0 * wi[11-1]; ts[(12+1)*SBLIMIT] = out1[12+1] + tmp0 * wi[6+1]; ts[(6 +1)*SBLIMIT] = out1[6 +1] + tmp1 * wi[1]; ts[(11-1)*SBLIMIT] = out1[11-1] + tmp1 * wi[5-1]; } DCT12_PART2 ts[(17-0)*SBLIMIT] = out1[17-0] + in2 * wi[11-0]; ts[(12+0)*SBLIMIT] = out1[12+0] + in2 * wi[6+0]; ts[(12+2)*SBLIMIT] = out1[12+2] + in3 * wi[6+2]; ts[(17-2)*SBLIMIT] = out1[17-2] + in3 * wi[11-2]; ts[(6+0)*SBLIMIT] = out1[6+0] + in0 * wi[0]; ts[(11-0)*SBLIMIT] = out1[11-0] + in0 * wi[5-0]; ts[(6+2)*SBLIMIT] = out1[6+2] + in4 * wi[2]; ts[(11-2)*SBLIMIT] = out1[11-2] + in4 * wi[5-2]; } in++; { real in0,in1,in2,in3,in4,in5; real *out2 = rawout2; DCT12_PART1 { real tmp0,tmp1 = (in0 - in4); { real tmp2 = (in1 - in5) * tfcos12[1]; tmp0 = tmp1 + tmp2; tmp1 -= tmp2; } out2[5-1] = tmp0 * wi[11-1]; out2[0+1] = tmp0 * wi[6+1]; ts[(12+1)*SBLIMIT] += tmp1 * wi[1]; ts[(17-1)*SBLIMIT] += tmp1 * wi[5-1]; } DCT12_PART2 out2[5-0] = in2 * wi[11-0]; out2[0+0] = in2 * wi[6+0]; out2[0+2] = in3 * wi[6+2]; out2[5-2] = in3 * wi[11-2]; ts[(12+0)*SBLIMIT] += in0 * wi[0]; ts[(17-0)*SBLIMIT] += in0 * wi[5-0]; ts[(12+2)*SBLIMIT] += in4 * wi[2]; ts[(17-2)*SBLIMIT] += in4 * wi[5-2]; } in++; { real in0,in1,in2,in3,in4,in5; real *out2 = rawout2; out2[12]=out2[13]=out2[14]=out2[15]=out2[16]=out2[17]=0.0; DCT12_PART1 { real tmp0,tmp1 = (in0 - in4); { real tmp2 = (in1 - in5) * tfcos12[1]; tmp0 = tmp1 + tmp2; tmp1 -= tmp2; } out2[11-1] = tmp0 * wi[11-1]; out2[6 +1] = tmp0 * wi[6+1]; out2[0+1] += tmp1 * wi[1]; out2[5-1] += tmp1 * wi[5-1]; } DCT12_PART2 out2[11-0] = in2 * wi[11-0]; out2[6 +0] = in2 * wi[6+0]; out2[6 +2] = in3 * wi[6+2]; out2[11-2] = in3 * wi[11-2]; out2[0+0] += in0 * wi[0]; out2[5-0] += in0 * wi[5-0]; out2[0+2] += in4 * wi[2]; out2[5-2] += in4 * wi[5-2]; } } /* *INDENT-ON* */ /* * III_hybrid */ static void III_hybrid(PMPSTR mp, real fsIn[SBLIMIT][SSLIMIT], real tsOut[SSLIMIT][SBLIMIT], int ch, struct gr_info_s *gr_infos) { real *tspnt = (real *) tsOut; real(*block)[2][SBLIMIT * SSLIMIT] = mp->hybrid_block; int *blc = mp->hybrid_blc; real *rawout1, *rawout2; int bt; int sb = 0; { int b = blc[ch]; rawout1 = block[b][ch]; b = -b + 1; rawout2 = block[b][ch]; blc[ch] = b; } if (gr_infos->mixed_block_flag) { sb = 2; dct36(fsIn[0], rawout1, rawout2, win[0], tspnt); dct36(fsIn[1], rawout1 + 18, rawout2 + 18, win1[0], tspnt + 1); rawout1 += 36; rawout2 += 36; tspnt += 2; } bt = gr_infos->block_type; if (bt == 2) { for (; sb < (int) gr_infos->maxb; sb += 2, tspnt += 2, rawout1 += 36, rawout2 += 36) { dct12(fsIn[sb], rawout1, rawout2, win[2], tspnt); dct12(fsIn[sb + 1], rawout1 + 18, rawout2 + 18, win1[2], tspnt + 1); } } else { for (; sb < (int) gr_infos->maxb; sb += 2, tspnt += 2, rawout1 += 36, rawout2 += 36) { dct36(fsIn[sb], rawout1, rawout2, win[bt], tspnt); dct36(fsIn[sb + 1], rawout1 + 18, rawout2 + 18, win1[bt], tspnt + 1); } } for (; sb < SBLIMIT; sb++, tspnt++) { int i; for (i = 0; i < SSLIMIT; i++) { tspnt[i * SBLIMIT] = *rawout1++; *rawout2++ = 0.0; } } } /* * main layer3 handler */ int layer3_audiodata_precedesframes(PMPSTR mp) { int audioDataInFrame; int framesToBacktrack; /* specific to Layer 3, since Layer 1 & 2 the audio data starts at the frame that describes it. */ /* determine how many bytes and therefore bitstream frames the audio data precedes it's matching frame */ /* lame_report_fnc(mp->report_err, "hip: main_data_begin = %d, mp->bsize %d, mp->fsizeold %d, mp->ssize %d\n", sideinfo.main_data_begin, mp->bsize, mp->fsizeold, mp->ssize); */ /* compute the number of frames to backtrack, 4 for the header, ssize already holds the CRC */ /* TODO Erroneously assumes current frame is same as previous frame. */ audioDataInFrame = mp->bsize - 4 - mp->ssize; framesToBacktrack = (mp->sideinfo.main_data_begin + audioDataInFrame - 1) / audioDataInFrame; /* lame_report_fnc(mp->report_err, "hip: audioDataInFrame %d framesToBacktrack %d\n", audioDataInFrame, framesToBacktrack); */ return framesToBacktrack; } int decode_layer3_sideinfo(PMPSTR mp) { struct frame *fr = &mp->fr; int stereo = fr->stereo; int single = fr->single; int ms_stereo; int sfreq = fr->sampling_frequency; int granules; int ch, gr, databits; if (stereo == 1) { /* stream is mono */ single = 0; } if (fr->mode == MPG_MD_JOINT_STEREO) { ms_stereo = fr->mode_ext & 0x2; } else ms_stereo = 0; if (fr->lsf) { granules = 1; III_get_side_info_2(mp, stereo, ms_stereo, sfreq, single); } else { granules = 2; III_get_side_info_1(mp, stereo, ms_stereo, sfreq, single); } databits = 0; for (gr = 0; gr < granules; ++gr) { for (ch = 0; ch < stereo; ++ch) { struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]); databits += gr_infos->part2_3_length; } } return databits - 8 * mp->sideinfo.main_data_begin; } int decode_layer3_frame(PMPSTR mp, unsigned char *pcm_sample, int *pcm_point, int (*synth_1to1_mono_ptr) (PMPSTR, real *, unsigned char *, int *), int (*synth_1to1_ptr) (PMPSTR, real *, int, unsigned char *, int *)) { int gr, ch, ss, clip = 0; int scalefacs[2][39]; /* max 39 for short[13][3] mode, mixed: 38, long: 22 */ /* struct III_sideinfo sideinfo; */ struct frame *fr = &(mp->fr); int stereo = fr->stereo; int single = fr->single; int ms_stereo, i_stereo; int sfreq = fr->sampling_frequency; int stereo1, granules; real hybridIn[2][SBLIMIT][SSLIMIT]; real hybridOut[2][SSLIMIT][SBLIMIT]; if (set_pointer(mp, (int) mp->sideinfo.main_data_begin) == MP3_ERR) return 0; if (stereo == 1) { /* stream is mono */ stereo1 = 1; single = 0; } else if (single >= 0) /* stream is stereo, but force to mono */ stereo1 = 1; else stereo1 = 2; if (fr->mode == MPG_MD_JOINT_STEREO) { ms_stereo = fr->mode_ext & 0x2; i_stereo = fr->mode_ext & 0x1; } else ms_stereo = i_stereo = 0; if (fr->lsf) { granules = 1; } else { granules = 2; } for (gr = 0; gr < granules; gr++) { { struct gr_info_s *gr_infos = &(mp->sideinfo.ch[0].gr[gr]); long part2bits; if (fr->lsf) part2bits = III_get_scale_factors_2(mp, scalefacs[0], gr_infos, 0); else { part2bits = III_get_scale_factors_1(mp, scalefacs[0], gr_infos); } if (mp->pinfo != NULL) { int i; mp->pinfo->sfbits[gr][0] = part2bits; for (i = 0; i < 39; i++) mp->pinfo->sfb_s[gr][0][i] = scalefacs[0][i]; } /* lame_report_fnc(mp->report_err, "calling III dequantize sample 1 gr_infos->part2_3_length %d\n", gr_infos->part2_3_length); */ if (III_dequantize_sample(mp, hybridIn[0], scalefacs[0], gr_infos, sfreq, part2bits)) return clip; } if (stereo == 2) { struct gr_info_s *gr_infos = &(mp->sideinfo.ch[1].gr[gr]); long part2bits; if (fr->lsf) part2bits = III_get_scale_factors_2(mp, scalefacs[1], gr_infos, i_stereo); else { part2bits = III_get_scale_factors_1(mp, scalefacs[1], gr_infos); } if (mp->pinfo != NULL) { int i; mp->pinfo->sfbits[gr][1] = part2bits; for (i = 0; i < 39; i++) mp->pinfo->sfb_s[gr][1][i] = scalefacs[1][i]; } /* lame_report_fnc(mp->report_err, "calling III dequantize sample 2 gr_infos->part2_3_length %d\n", gr_infos->part2_3_length); */ if (III_dequantize_sample(mp, hybridIn[1], scalefacs[1], gr_infos, sfreq, part2bits)) return clip; if (ms_stereo) { int i; for (i = 0; i < SBLIMIT * SSLIMIT; i++) { real tmp0, tmp1; tmp0 = ((real *) hybridIn[0])[i]; tmp1 = ((real *) hybridIn[1])[i]; ((real *) hybridIn[1])[i] = tmp0 - tmp1; ((real *) hybridIn[0])[i] = tmp0 + tmp1; } } if (i_stereo) III_i_stereo(hybridIn, scalefacs[1], gr_infos, sfreq, ms_stereo, fr->lsf); if (ms_stereo || i_stereo || (single == 3)) { if (gr_infos->maxb > mp->sideinfo.ch[0].gr[gr].maxb) mp->sideinfo.ch[0].gr[gr].maxb = gr_infos->maxb; else gr_infos->maxb = mp->sideinfo.ch[0].gr[gr].maxb; } switch (single) { case 3: { int i; real *in0 = (real *) hybridIn[0], *in1 = (real *) hybridIn[1]; for (i = 0; i < (int) (SSLIMIT * gr_infos->maxb); i++, in0++) *in0 = (*in0 + *in1++); /* *0.5 done by pow-scale */ } break; case 1: { int i; real *in0 = (real *) hybridIn[0], *in1 = (real *) hybridIn[1]; for (i = 0; i < (int) (SSLIMIT * gr_infos->maxb); i++) *in0++ = *in1++; } break; } } if (mp->pinfo != NULL) { int i, sb; float ifqstep; mp->pinfo->bitrate = tabsel_123[fr->lsf][fr->lay - 1][fr->bitrate_index]; mp->pinfo->sampfreq = freqs[sfreq]; mp->pinfo->emph = fr->emphasis; mp->pinfo->crc = fr->error_protection; mp->pinfo->padding = fr->padding; mp->pinfo->stereo = fr->stereo; mp->pinfo->js = (fr->mode == MPG_MD_JOINT_STEREO); mp->pinfo->ms_stereo = ms_stereo; mp->pinfo->i_stereo = i_stereo; mp->pinfo->maindata = mp->sideinfo.main_data_begin; for (ch = 0; ch < stereo1; ch++) { struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]); mp->pinfo->big_values[gr][ch] = gr_infos->big_values; mp->pinfo->scalefac_scale[gr][ch] = gr_infos->scalefac_scale; mp->pinfo->mixed[gr][ch] = gr_infos->mixed_block_flag; mp->pinfo->mpg123blocktype[gr][ch] = gr_infos->block_type; mp->pinfo->mainbits[gr][ch] = gr_infos->part2_3_length; mp->pinfo->preflag[gr][ch] = gr_infos->preflag; if (gr == 1) mp->pinfo->scfsi[ch] = gr_infos->scfsi; } for (ch = 0; ch < stereo1; ch++) { struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]); ifqstep = (mp->pinfo->scalefac_scale[gr][ch] == 0) ? .5 : 1.0; if (2 == gr_infos->block_type) { for (i = 0; i < 3; i++) { for (sb = 0; sb < 12; sb++) { int j = 3 * sb + i; /* is_p = scalefac[sfb*3+lwin-gr_infos->mixed_block_flag]; */ /* scalefac was copied into pinfo->sfb_s[] above */ mp->pinfo->sfb_s[gr][ch][j] = -ifqstep * mp->pinfo->sfb_s[gr][ch][j - gr_infos->mixed_block_flag]; mp->pinfo->sfb_s[gr][ch][j] -= 2 * (mp->pinfo->sub_gain[gr][ch][i]); } mp->pinfo->sfb_s[gr][ch][3 * sb + i] = -2 * (mp->pinfo->sub_gain[gr][ch][i]); } } else { for (sb = 0; sb < 21; sb++) { /* scalefac was copied into pinfo->sfb[] above */ mp->pinfo->sfb[gr][ch][sb] = mp->pinfo->sfb_s[gr][ch][sb]; if (gr_infos->preflag) mp->pinfo->sfb[gr][ch][sb] += pretab1[sb]; mp->pinfo->sfb[gr][ch][sb] *= -ifqstep; } mp->pinfo->sfb[gr][ch][21] = 0; } } for (ch = 0; ch < stereo1; ch++) { int j = 0; for (sb = 0; sb < SBLIMIT; sb++) for (ss = 0; ss < SSLIMIT; ss++, j++) mp->pinfo->mpg123xr[gr][ch][j] = hybridIn[ch][sb][ss]; } } for (ch = 0; ch < stereo1; ch++) { struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]); III_antialias(hybridIn[ch], gr_infos); III_hybrid(mp, hybridIn[ch], hybridOut[ch], ch, gr_infos); } for (ss = 0; ss < SSLIMIT; ss++) { if (single >= 0) { clip += (*synth_1to1_mono_ptr) (mp, hybridOut[0][ss], pcm_sample, pcm_point); } else { int p1 = *pcm_point; clip += (*synth_1to1_ptr) (mp, hybridOut[0][ss], 0, pcm_sample, &p1); clip += (*synth_1to1_ptr) (mp, hybridOut[1][ss], 1, pcm_sample, pcm_point); } } } return clip; }