/// ------------Lamellar Bandwidth: RDMA Put ------------------------- /// Test the bandwidth between two PEs using an RDMA Put of N bytes /// from a local array into a remote PE. /// -------------------------------------------------------------------- use lamellar::array::prelude::*; use lamellar::memregion::prelude::*; use std::time::Instant; const ARRAY_LEN: usize = 1024 * 1024 * 1024; fn main() { let world = lamellar::LamellarWorldBuilder::new().build(); let my_pe = world.my_pe(); let num_pes = world.num_pes(); let array: LocalLockArray = LocalLockArray::new(&world, ARRAY_LEN * num_pes, Distribution::Block).block(); let data = world.alloc_one_sided_mem_region::(ARRAY_LEN); unsafe { for i in data.as_mut_slice().unwrap() { *i = my_pe as u8; } } array .dist_iter_mut() .for_each(move |elem| *elem = 255 as u8) .block(); //this is can be pretty slow for atomic arrays as we perform an atomic store for 2^30 elements, local lock tends to perform better let mut array = array.into_atomic().block(); //so we simply convert the LocalLockArray array to atomic after initalization world.barrier(); let s = Instant::now(); world.barrier(); let b = s.elapsed().as_secs_f64(); println!("Barrier latency: {:?}s {:?}us", b, b * 1_000_000 as f64); if my_pe == 0 { println!("==================Bandwidth test==========================="); } let mut bws = vec![]; for i in 0..27 { let num_bytes = 2_u64.pow(i); let old: f64 = world.MB_sent(); let mbs_o = world.MB_sent(); let mut sum = 0; let mut cnt = 0; let timer = Instant::now(); let mut sub_time = 0f64; let mut exp = 20; if num_bytes <= 2048 { exp = 18 + i; } else if num_bytes >= 4096 { exp = 30; } if my_pe == 0 { for j in (0..2_u64.pow(exp) as usize).step_by(num_bytes as usize) { let sub_timer = Instant::now(); let sub_reg = data.sub_region(..num_bytes as usize); let _ = unsafe { array.put(ARRAY_LEN * (num_pes - 1) + j, sub_reg).spawn() }; // println!("j: {:?}",j); // unsafe { array.put_slice(num_pes - 1, j, &data[..num_bytes as usize]) }; sub_time += sub_timer.elapsed().as_secs_f64(); sum += num_bytes * 1 as u64; cnt += 1; } println!("issue time: {:?}", timer.elapsed()); array.wait_all(); } array.barrier(); let cur_t = timer.elapsed().as_secs_f64(); if my_pe == num_pes - 1 { let array_data = array.mut_local_data(); for j in (0..2_u64.pow(exp) as usize).step_by(num_bytes as usize) { while array_data.at((j + num_bytes as usize) - 1).load() == 255 as u8 { println!( "this should not happen {:?}", array_data.at((j + num_bytes as usize) - 1).load() ); std::thread::yield_now() } } } let cur: f64 = world.MB_sent(); let mbs_c = world.MB_sent(); if my_pe == 0 { println!( "tx_size: {:?}B num_tx: {:?} num_bytes: {:?}MB time: {:?} ({:?}) throughput (avg): {:?}MB/s (cuml): {:?}MB/s total_bytes (w/ overhead){:?}MB throughput (w/ overhead){:?} ({:?}) latency: {:?}us", num_bytes, //transfer size cnt, //num transfers sum as f64/ 1048576.0, cur_t, //transfer time sub_time, (sum as f64 / 1048576.0) / cur_t, // throughput of user payload ((sum*(num_pes-1) as u64) as f64 / 1048576.0) / cur_t, cur - old, //total bytes sent including overhead (cur - old) as f64 / cur_t, //throughput including overhead (mbs_c -mbs_o )/ cur_t, (cur_t/cnt as f64) * 1_000_000 as f64 , ); } bws.push((sum as f64 / 1048576.0) / cur_t); // unsafe { // for i in array.mut_local_data() { // i.store(255 as u8); // } // }; let temp = array.into_local_lock().block(); temp.dist_iter_mut() .for_each(move |elem| *elem = 255 as u8) .block(); //this is pretty slow for atomic arrays as we perform an atomic store for 2^30 elements array = temp.into_atomic().block(); world.barrier(); } if my_pe == 0 { println!( "bandwidths: {}", bws.iter() .fold(String::new(), |acc, &num| acc + &num.to_string() + ", ") ); } world.barrier(); }