use lamellar::array::prelude::*; use rand::distributions::Distribution; use rand::distributions::Uniform; macro_rules! initialize_array { (UnsafeArray,$array:ident,$init_val:ident) => { unsafe { $array .dist_iter_mut() .for_each(move |x| *x = $init_val) .block(); } $array.barrier(); }; (AtomicArray,$array:ident,$init_val:ident) => { $array .dist_iter() .for_each(move |x| x.store($init_val)) .block(); $array.barrier(); }; (LocalLockArray,$array:ident,$init_val:ident) => { $array .dist_iter_mut() .for_each(move |x| *x = $init_val) .block(); $array.barrier(); }; (GlobalLockArray,$array:ident,$init_val:ident) => { $array .dist_iter_mut() .for_each(move |x| *x = $init_val) .block(); $array.barrier(); }; } macro_rules! check_val { (UnsafeArray,$val:ident,$min_val:ident,$valid:ident) => { // UnsafeArray updates will be nondeterminstic so should not ever be considered safe/valid so for testing sake we just say they are }; (AtomicArray,$val:ident,$min_val:ident,$valid:ident) => { if (($val - $min_val) as f32).abs() > 0.0001 { //all updates should be preserved $valid = false; } }; (LocalLockArray,$val:ident,$min_val:ident,$valid:ident) => { if (($val - $min_val) as f32).abs() > 0.0001 { //all updates should be preserved $valid = false; } }; (GlobalLockArray,$val:ident,$min_val:ident,$valid:ident) => { if (($val - $min_val) as f32).abs() > 0.0001 { //all updates should be preserved $valid = false; } }; } macro_rules! insert_prev{ (UnsafeArray,$val:ident,$prevs:ident) => { // UnsafeArray updates will be nondeterminstic so should not ever be considered safe/valid so for testing sake we just say they are true }; (AtomicArray,$val:ident,$prevs:ident) => { $prevs.insert($val) }; (LocalLockArray,$val:ident,$prevs:ident) => { $prevs.insert($val) }; (GlobalLockArray,$val:ident,$prevs:ident) => { $prevs.insert($val) }; } macro_rules! max_updates { ($t:ty,$num_pes:ident) => { if <$t>::MAX as u128 > 1000 as u128 { 1000 / $num_pes } else { <$t>::MAX as usize / $num_pes } }; } macro_rules! onesided_iter { (GlobalLockArray,$array:ident) => { $array.read_lock().block().onesided_iter() }; ($arraytype:ident,$array:ident) => { $array.onesided_iter() }; } macro_rules! fetch_sub_test { ($array:ident, $t:ty, $len:expr, $dist:ident) => {{ let world = lamellar::LamellarWorldBuilder::new().build(); let num_pes = world.num_pes(); let _my_pe = world.my_pe(); let array_total_len = $len; let mut rng = rand::thread_rng(); let rand_idx = Uniform::from(0..array_total_len); let mut success = true; let array: $array<$t> = $array::<$t>::new(world.team(), array_total_len, $dist) .block() .into(); //convert into abstract LamellarArray, distributed len is total_len let pe_max_val: $t = 10 as $t; let max_val = pe_max_val * num_pes as $t; let init_val = max_val as $t; #[allow(unused)] let zero = 0 as $t; initialize_array!($array, array, init_val); array.wait_all(); array.barrier(); for idx in 0..array.len() { let mut reqs = vec![]; for _i in 0..(pe_max_val as usize) { #[allow(unused_unsafe)] reqs.push(unsafe { array.fetch_sub(idx, 1 as $t) }); } #[allow(unused_mut)] let mut prevs: std::collections::HashSet = std::collections::HashSet::new(); for req in reqs { let val = world.block_on(req) as u128; if !insert_prev!($array, val, prevs) { eprintln!("full 1: {:?} {:?} {:?}", init_val, val, prevs); success = false; break; } } } array.barrier(); #[allow(unused_unsafe)] for (i, elem) in unsafe { onesided_iter!($array, array).into_iter().enumerate() } { let val = *elem; check_val!($array, val, zero, success); if !success { eprintln!("{:?} {:?} {:?}", i, val, max_val); } } array.barrier(); let num_updates = max_updates!($t, num_pes); let tot_updates = (num_updates * num_pes) as $t; initialize_array!($array, array, tot_updates); array.wait_all(); array.barrier(); // let mut prev_vals = vec![tot_updates as $t;array.len()]; let mut reqs = vec![]; // println!("2------------"); for _i in 0..num_updates { let idx = rand_idx.sample(&mut rng); #[allow(unused_unsafe)] reqs.push((unsafe { array.fetch_sub(idx, 1 as $t) }, idx)) } for (req, _idx) in reqs { let _val = world.block_on(req); } array.barrier(); #[allow(unused_unsafe)] let sum = unsafe { onesided_iter!($array, array) .into_iter() .fold(0, |acc, x| acc + *x as usize) }; let calced_sum = tot_updates as usize * (array.len() - 1); check_val!($array, sum, calced_sum, success); if !success { eprintln!("{:?} {:?} {:?}", sum, calced_sum, (array.len() - 1)); } world.wait_all(); world.barrier(); initialize_array!($array, array, init_val); let half_len = array_total_len / 2; let start_i = half_len / 2; let end_i = start_i + half_len; let rand_idx = Uniform::from(0..half_len); let sub_array = array.sub_array(start_i..end_i); sub_array.barrier(); for idx in 0..sub_array.len() { let mut reqs = vec![]; for _i in 0..(pe_max_val as usize) { #[allow(unused_unsafe)] reqs.push(unsafe { sub_array.fetch_sub(idx, 1 as $t) }); } #[allow(unused_mut)] let mut prevs: std::collections::HashSet = std::collections::HashSet::new(); for req in reqs { let val = world.block_on(req) as u128; if !insert_prev!($array, val, prevs) { eprintln!("half 1: {:?} {:?}", val, prevs); success = false; break; } } } sub_array.barrier(); #[allow(unused_unsafe)] for (i, elem) in unsafe { onesided_iter!($array, sub_array).into_iter().enumerate() } { let val = *elem; check_val!($array, val, zero, success); if !success { eprintln!("{:?} {:?} {:?}", i, val, max_val); } } sub_array.barrier(); let num_updates = max_updates!($t, num_pes); let tot_updates = (num_updates * num_pes) as $t; initialize_array!($array, array, tot_updates); sub_array.wait_all(); sub_array.barrier(); // let mut prev_vals = vec![tot_updates ;sub_array.len()]; let mut reqs = vec![]; // println!("2------------"); for _i in 0..num_updates { let idx = rand_idx.sample(&mut rng); #[allow(unused_unsafe)] reqs.push((unsafe { sub_array.fetch_sub(idx, 1 as $t) }, idx)) } for (req, _idx) in reqs { let _val = world.block_on(req); } sub_array.barrier(); #[allow(unused_unsafe)] let sum = unsafe { onesided_iter!($array, sub_array) .into_iter() .fold(0, |acc, x| acc + *x as usize) }; let calced_sum = tot_updates as usize * (sub_array.len() - 1); check_val!($array, sum, calced_sum, success); if !success { eprintln!("{:?} {:?} {:?}", sum, calced_sum, (sub_array.len() - 1)); } sub_array.wait_all(); sub_array.barrier(); initialize_array!($array, array, init_val); let pe_len = array_total_len / num_pes; for pe in 0..num_pes { let len = std::cmp::max(pe_len / 2, 1); let start_i = (pe * pe_len) + len / 2; let end_i = start_i + len; let rand_idx = Uniform::from(0..len); let sub_array = array.sub_array(start_i..end_i); sub_array.barrier(); for idx in 0..sub_array.len() { let mut reqs = vec![]; for _i in 0..(pe_max_val as usize) { #[allow(unused_unsafe)] reqs.push(unsafe { sub_array.fetch_sub(idx, 1 as $t) }); } #[allow(unused_mut)] let mut prevs: std::collections::HashSet = std::collections::HashSet::new(); for req in reqs { let val = world.block_on(req) as u128; if !insert_prev!($array, val, prevs) { eprintln!("pe 1: {:?} {:?}", val, prevs); success = false; break; } } } sub_array.barrier(); #[allow(unused_unsafe)] for (i, elem) in unsafe { onesided_iter!($array, sub_array).into_iter().enumerate() } { let val = *elem; check_val!($array, val, zero, success); if !success { eprintln!("{:?} {:?} {:?}", i, val, max_val); } } sub_array.barrier(); let num_updates = max_updates!($t, num_pes); let tot_updates = (num_updates * num_pes) as $t; initialize_array!($array, array, tot_updates); sub_array.wait_all(); sub_array.barrier(); let mut reqs = vec![]; // println!("2------------"); for _i in 0..num_updates { let idx = rand_idx.sample(&mut rng); #[allow(unused_unsafe)] reqs.push((unsafe { sub_array.fetch_sub(idx, 1 as $t) }, idx)) } for (req, _idx) in reqs { let _val = world.block_on(req); } sub_array.barrier(); #[allow(unused_unsafe)] let sum = unsafe { onesided_iter!($array, sub_array) .into_iter() .fold(0, |acc, x| acc + *x as usize) }; let calced_sum = tot_updates as usize * (sub_array.len() - 1); check_val!($array, sum, calced_sum, success); if !success { eprintln!("{:?} {:?} {:?}", sum, calced_sum, (sub_array.len() - 1)); } sub_array.wait_all(); sub_array.barrier(); initialize_array!($array, array, init_val); } if !success { eprintln!("failed"); } }}; } fn main() { let args: Vec = std::env::args().collect(); let array = args[1].clone(); let dist = args[2].clone(); let elem = args[3].clone(); let len = args[4].parse::().unwrap(); let dist_type = match dist.as_str() { "Block" => lamellar::array::Distribution::Block, "Cyclic" => lamellar::array::Distribution::Cyclic, _ => panic!("unsupported dist type"), }; match array.as_str() { "UnsafeArray" => match elem.as_str() { "u8" => fetch_sub_test!(UnsafeArray, u8, len, dist_type), "u16" => fetch_sub_test!(UnsafeArray, u16, len, dist_type), "u32" => fetch_sub_test!(UnsafeArray, u32, len, dist_type), "u64" => fetch_sub_test!(UnsafeArray, u64, len, dist_type), "u128" => fetch_sub_test!(UnsafeArray, u128, len, dist_type), "usize" => fetch_sub_test!(UnsafeArray, usize, len, dist_type), "i8" => fetch_sub_test!(UnsafeArray, i8, len, dist_type), "i16" => fetch_sub_test!(UnsafeArray, i16, len, dist_type), "i32" => fetch_sub_test!(UnsafeArray, i32, len, dist_type), "i64" => fetch_sub_test!(UnsafeArray, i64, len, dist_type), "i128" => fetch_sub_test!(UnsafeArray, i128, len, dist_type), "isize" => fetch_sub_test!(UnsafeArray, isize, len, dist_type), "f32" => fetch_sub_test!(UnsafeArray, f32, len, dist_type), "f64" => fetch_sub_test!(UnsafeArray, f64, len, dist_type), _ => eprintln!("unsupported element type"), }, "AtomicArray" => match elem.as_str() { "u8" => fetch_sub_test!(AtomicArray, u8, len, dist_type), "u16" => fetch_sub_test!(AtomicArray, u16, len, dist_type), "u32" => fetch_sub_test!(AtomicArray, u32, len, dist_type), "u64" => fetch_sub_test!(AtomicArray, u64, len, dist_type), "u128" => fetch_sub_test!(AtomicArray, u128, len, dist_type), "usize" => fetch_sub_test!(AtomicArray, usize, len, dist_type), "i8" => fetch_sub_test!(AtomicArray, i8, len, dist_type), "i16" => fetch_sub_test!(AtomicArray, i16, len, dist_type), "i32" => fetch_sub_test!(AtomicArray, i32, len, dist_type), "i64" => fetch_sub_test!(AtomicArray, i64, len, dist_type), "i128" => fetch_sub_test!(AtomicArray, i128, len, dist_type), "isize" => fetch_sub_test!(AtomicArray, isize, len, dist_type), "f32" => fetch_sub_test!(AtomicArray, f32, len, dist_type), "f64" => fetch_sub_test!(AtomicArray, f64, len, dist_type), _ => eprintln!("unsupported element type"), }, "LocalLockArray" => match elem.as_str() { "u8" => fetch_sub_test!(LocalLockArray, u8, len, dist_type), "u16" => fetch_sub_test!(LocalLockArray, u16, len, dist_type), "u32" => fetch_sub_test!(LocalLockArray, u32, len, dist_type), "u64" => fetch_sub_test!(LocalLockArray, u64, len, dist_type), "u128" => fetch_sub_test!(LocalLockArray, u128, len, dist_type), "usize" => fetch_sub_test!(LocalLockArray, usize, len, dist_type), "i8" => fetch_sub_test!(LocalLockArray, i8, len, dist_type), "i16" => fetch_sub_test!(LocalLockArray, i16, len, dist_type), "i32" => fetch_sub_test!(LocalLockArray, i32, len, dist_type), "i64" => fetch_sub_test!(LocalLockArray, i64, len, dist_type), "i128" => fetch_sub_test!(LocalLockArray, i128, len, dist_type), "isize" => fetch_sub_test!(LocalLockArray, isize, len, dist_type), "f32" => fetch_sub_test!(LocalLockArray, f32, len, dist_type), "f64" => fetch_sub_test!(LocalLockArray, f64, len, dist_type), _ => eprintln!("unsupported element type"), }, "GlobalLockArray" => match elem.as_str() { "u8" => fetch_sub_test!(GlobalLockArray, u8, len, dist_type), "u16" => fetch_sub_test!(GlobalLockArray, u16, len, dist_type), "u32" => fetch_sub_test!(GlobalLockArray, u32, len, dist_type), "u64" => fetch_sub_test!(GlobalLockArray, u64, len, dist_type), "u128" => fetch_sub_test!(GlobalLockArray, u128, len, dist_type), "usize" => fetch_sub_test!(GlobalLockArray, usize, len, dist_type), "i8" => fetch_sub_test!(GlobalLockArray, i8, len, dist_type), "i16" => fetch_sub_test!(GlobalLockArray, i16, len, dist_type), "i32" => fetch_sub_test!(GlobalLockArray, i32, len, dist_type), "i64" => fetch_sub_test!(GlobalLockArray, i64, len, dist_type), "i128" => fetch_sub_test!(GlobalLockArray, i128, len, dist_type), "isize" => fetch_sub_test!(GlobalLockArray, isize, len, dist_type), "f32" => fetch_sub_test!(GlobalLockArray, f32, len, dist_type), "f64" => fetch_sub_test!(GlobalLockArray, f64, len, dist_type), _ => {} //eprintln!("unsupported element type"), }, _ => eprintln!("unsupported array type"), } }