# compute dpd command ## Syntax ``` LAMMPS compute ID group-ID dpd ``` - ID, group-ID are documented in [compute](compute) command - dpd = style name of this compute command ## Examples ``` LAMMPS compute 1 all dpd ``` ## Description Define a computation that accumulates the total internal conductive energy ($U^{\text{cond}}$), the total internal mechanical energy ($U^{\text{mech}}$), the total chemical energy ($U^\text{chem}$) and the *harmonic* average of the internal temperature ($\theta_\text{avg}$) for the entire system of particles. See the [compute dpd/atom](compute_dpd_atom) command if you want per-particle internal energies and internal temperatures. The system internal properties are computed according to the following relations: $$\begin{aligned} U^\text{cond} = & \sum_{i=1}^{N} u_{i}^\text{cond} \\ U^\text{mech} = & \sum_{i=1}^{N} u_{i}^\text{mech} \\ U^\text{chem} = & \sum_{i=1}^{N} u_{i}^\text{chem} \\ U = & \sum_{i=1}^{N} (u_{i}^\text{cond} + u_{i}^\text{mech} + u_{i}^\text{chem}) \\ \theta_{avg} = & \biggl(\frac{1}{N}\sum_{i=1}^{N} \frac{1}{\theta_{i}}\biggr)^{-1} \\ \end{aligned}$$ where $N$ is the number of particles in the system. ------------------------------------------------------------------------ ## Output info This compute calculates a global vector of length 5 ($U^\text{cond}$, $U^\text{mech}$, $U^\text{chem}$, $\theta_\text{avg}$, $N$), which can be accessed by indices 1 through 5. See the [Howto output](Howto_output) page for an overview of LAMMPS output options. The vector values will be in energy and temperature [units](units). ## Restrictions This command is part of the DPD-REACT package. It is only enabled if LAMMPS was built with that package. See the [Build package](Build_package) page for more info. This command also requires use of the [atom_style dpd](atom_style) command. ## Related commands [compute dpd/atom](compute_dpd_atom), [thermo_style](thermo_style) ## Default none ------------------------------------------------------------------------ ::: {#Larentzos1} **(Larentzos)** J.P. Larentzos, J.K. Brennan, J.D. Moore, and W.D. Mattson, \"LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E)\", ARL-TR-6863, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD (2014). :::