# pair_style spin/neel command ## Syntax ``` LAMMPS pair_style spin/neel cutoff ``` - cutoff = global cutoff pair (distance in metal units) ## Examples ``` LAMMPS pair_style spin/neel 4.0 pair_coeff * * neel 4.0 0.0048 0.234 1.168 2.6905 0.705 0.652 pair_coeff 1 2 neel 4.0 0.0048 0.234 1.168 0.0 0.0 1.0 ``` ## Description Style *spin/neel* computes the Neel pair anisotropy model between pairs of magnetic spins: $$\mathcal{H}_{N\acute{e}el}=-\sum_{{ i,j=1,i\neq j}}^N g_1(r_{ij})\left(({\mathbf{e}}_{ij}\cdot {\mathbf{s}}_{i})({\mathbf{e}}_{ij} \cdot {\mathbf{s}}_{j})-\frac{{\mathbf{s}}_{i}\cdot{\mathbf{s}}_{j}}{3} \right) +q_1(r_{ij})\left( ({\mathbf{e}}_{ij}\cdot {\mathbf{s}}_{i})^2 -\frac{{\mathbf{s}}_{i}\cdot{\mathbf{s}}_{j}}{3}\right) \left( ({\mathbf{e}}_{ij}\cdot {\mathbf{s}}_{i})^2 -\frac{{\mathbf{s}}_{i}\cdot{\mathbf{s}}_{j}}{3} \right) + q_2(r_{ij}) \Big( ({\mathbf{e}}_{ij}\cdot {\mathbf{s}}_{i}) ({\mathbf{e}}_{ij}\cdot {\mathbf{s}}_{j})^3 + ({\mathbf{e}}_{ij}\cdot {\mathbf{s}}_{j}) ({\mathbf{e}}_{ij}\cdot {\mathbf{s}}_{i})^3\Big)$$ where $\mathbf{s}_i$ and $\mathbf{s}_j$ are two neighboring magnetic spins of two particles, $r_{ij} = \vert \mathbf{r}_i - \mathbf{r}_j \vert$ is the inter-atomic distance between the two particles, $\mathbf{e}_{ij} = \frac{\mathbf{r}_i - \mathbf{r}_j}{\vert \mathbf{r}_i - \mathbf{r}_j\vert}$ is their normalized separation vector and $g_1$, $q_1$ and $q_2$ are three functions defining the intensity of the dipolar and quadrupolar contributions, with: $$\begin{aligned} g_1(r_{ij}) &= g(r_{ij}) + \frac{12}{35} q(r_{ij}) \\ q_1(r_{ij}) &= \frac{9}{5} q(r_{ij}) \\ q_2(r_{ij}) &= - \frac{2}{5} q(r_{ij}) \end{aligned}$$ With the functions $g(r_{ij})$ and $q(r_{ij})$ defined and fitted according to the same Bethe-Slater function used to fit the exchange interaction: $${J}\left( r_{ij} \right) = 4 a \left( \frac{r_{ij}}{d} \right)^2 \left( 1 - b \left( \frac{r_{ij}}{d} \right)^2 \right) e^{-\left( \frac{r_{ij}}{d} \right)^2 }\Theta (R_c - r_{ij})$$ where $a$, $b$ and $d$ are the three constant coefficients defined in the associated \"pair_coeff\" command. The coefficients $a$, $b$, and $d$ need to be fitted so that the function above matches with the values of the magneto-elastic constant of the materials at stake. Examples and more explanations about this function and its parameterization are reported in [(Tranchida)](Tranchida6). More examples of parameterization will be provided in future work. From this DM interaction, each spin $i$ will be submitted to a magnetic torque $\mathbf{\omega}$ and its associated atom to a force $\mathbf{F}$ (for spin-lattice calculations only). More details about the derivation of these torques/forces are reported in [(Tranchida)](Tranchida6). ------------------------------------------------------------------------ ## Restrictions All the *pair/spin* styles are part of the SPIN package. These styles are only enabled if LAMMPS was built with this package, and if the atom_style \"spin\" was declared. See the [Build package](Build_package) page for more info. ## Related commands [atom_style spin](atom_style), [pair_coeff](pair_coeff), [pair_eam](pair_eam), ## Default none ------------------------------------------------------------------------ ::: {#Tranchida6} **(Tranchida)** Tranchida, Plimpton, Thibaudeau and Thompson, Journal of Computational Physics, 372, 406-425, (2018). :::