# ifndef CERF_H # define CERF_H # include # include /* Copyright (C) 1998, 1999 John Smith This file is part of Octave. Or it might be one day.... Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // Put together by John Smith john at arrows dot demon dot co dot uk, // using ideas by others. // // Calculate erf(z) for complex z. // Three methods are implemented; which one is used depends on z. // // The code includes some hard coded constants that are intended to // give about 14 decimal places of accuracy. This is appropriate for // 64-bit floating point numbers. // // Oct 1999: Fixed a typo that in // const Complex cerf_continued_fraction( const Complex z ) // that caused erroneous answers for erf(z) where real(z) negative // // // Abramowitz and Stegun: (eqn: 7.1.14) gives this continued // fraction for erfc(z) // // erfc(z) = sqrt(pi).exp(-z^2). 1 1/2 1 3/2 2 5/2 // --- --- --- --- --- --- ... // z + z + z + z + z + z + // // This is evaluated using Lentz's method, as described in the narative // of Numerical Recipes in C. // // The continued fraction is true providing real(z)>0. In practice we // like real(z) to be significantly greater than 0, say greater than 0.5. // template< class Complex> const Complex cerfc_continued_fraction( const Complex z ) { double tiny = 1e-20 ; // a small number, large enough to calculate 1/tiny double eps = 1e-15 ; // large enough so that 1.0+eps > 1.0, when using // the floating point arithmetic // // first calculate z+ 1/2 1 // --- --- ... // z + z + Complex f(z) ; Complex C(f) ; Complex D(0.0) ; Complex delta ; double a ; a = 0.0 ; do { a = a + 0.5 ; D = z + a*D ; C = z + a/C ; if (D.real() == 0.0 && D.imag() == 0.0) D = tiny ; D = 1.0 / D ; delta = (C * D) ; f = f * delta ; } while (abs(1.0-delta) > eps ) ; // // Do the first term of the continued fraction // f = 1.0 / f ; // // and do the final scaling // f = f * exp(-z*z)/ sqrt(M_PI) ; return f ; } template< class Complex> const Complex cerf_continued_fraction( const Complex z ) { // warning("cerf_continued_fraction:"); if (z.real() > 0) return 1.0 - cerfc_continued_fraction( z ) ; else return -1.0 + cerfc_continued_fraction( -z ) ; } // // Abramawitz and Stegun, Eqn. 7.1.5 gives a series for erf(z) // good for all z, but converges faster for smallish abs(z), say abs(z)<2. // template< class Complex> const Complex cerf_series( const Complex z ) { double tiny = 1e-20 ; // a small number compared with 1. // warning("cerf_series:"); Complex sum(0.0) ; Complex term(z) ; Complex z2(z*z) ; for (int n=0; n<3 || abs(term) > abs(sum)*tiny; n++) { sum = sum + term / (2*n+1) ; term = -term * z2 / (n+1) ; } return sum * 2.0 / sqrt(M_PI) ; } // // Numerical Recipes quotes a formula due to Rybicki for evaluating // Dawson's Integral: // // exp(-x^2) integral exp(t^2).dt = 1/sqrt(pi) lim sum exp(-(z-n.h)^2) / n // 0 to x h->0 n odd // // This can be adapted to erf(z). // template< class Complex> const Complex cerf_rybicki( const Complex z ) { // warning("cerf_rybicki:"); double h = 0.2 ; // numerical experiment suggests this is small enough // // choose an even n0, and then shift z->z-n0.h and n->n-h. // n0 is chosen so that real((z-n0.h)^2) is as small as possible. // int n0 = 2*(int) (floor( z.imag()/(2*h) + 0.5 )) ; Complex z0( 0.0, n0*h ) ; Complex zp(z-z0) ; Complex sum(0.0,0.0) ; // // limits of sum chosen so that the end sums of the sum are // fairly small. In this case exp(-(35.h)^2)=5e-22 // // for (int np=-35; np<=35; np+=2) { Complex t( zp.real(), zp.imag()-np*h) ; Complex b( exp(t*t) / (np+n0) ) ; sum += b ; } sum = sum * 2 * exp(-z*z) / M_PI ; return Complex(-sum.imag(), sum.real()) ; } template< class Complex> const Complex cerf( const Complex z ) { // // Use the method appropriate to size of z - // there probably ought to be an extra option for NaN z, or infinite z // // if (abs(z) < 2.0) return cerf_series( z ) ; else if (abs(z.real()) < 0.5) return cerf_rybicki( z ) ; else return cerf_continued_fraction( z ) ; } // // Footnote: // // Using the definitions from Abramowitz and Stegun (7.3.1, 7.3.2) // The fresnel intgerals defined as: // // / t=x // C(x) = | cos(pi/2 t^2) dt // / // t=0 // // and // / t=x // S(x) = | sin(pi/2 t^2) dt // / // t=0 // // These can be derived from erf(x) using 7.3.22 // // C(z) +iS(z) = (1+i) erf( sqrt(pi)/2 (1-i) z ) // ----- // 2 // // -------------------------------------------------------------------------- // Some test examples - // comparative data taken from Abramowitz and Stegun table 7.9. // Table 7.9 tabulates w(z), where w(z) = exp(-z*z) erfc(iz) // I have copied twelve values of w(z) from the table, and separately // calculated them using this code. The results are identical. // // x y Abramowitz & Stegun | Octave Calculations // w(x+iy) | w(x+iy) cerf ( i.(x+iy)) // 0.2 0.2 0.783538+0.157403i | 0.783538 +0.157403 0.23154672 -0.219516 // 0.2 0.7 0.515991+0.077275i | 0.515991 +0.077275 0.69741968 -0.138277 // 0.2 1.7 0.289309+0.027154i | 0.289309 +0.027154 0.98797507 -0.011744 // 0.2 2.7 0.196050+0.013002i | 0.196050 +0.013002 0.99994252 -0.000127 // 1.2 0.2 0.270928+0.469488i | 0.270928 +0.469488 0.90465623 -2.196064 // 1.2 0.7 0.280740+0.291851i | 0.280740 +0.291851 1.82926135 -0.639343 // 1.2 1.7 0.222436+0.129684i | 0.222436 +0.129684 1.00630308 +0.060067 // 1.2 2.7 0.170538+0.068617i | 0.170538 +0.068617 0.99955699 -0.000290 // 2.2 0.2 0.041927+0.287771i | 0.041927 +0.287771 24.70460755-26.205981 // 2.2 0.7 0.099943+0.242947i | 0.099943 +0.242947 9.88734713+18.310797 // 2.2 1.7 0.135021+0.153161i | 0.135021 +0.153161 1.65541359 -1.276707 // 2.2 2.7 0.127900+0.096330i | 0.127900 +0.096330 0.98619434 +0.000564 # endif