// -*- c++ -*- // This file is part of the Collective Variables module (Colvars). // The original version of Colvars and its updates are located at: // https://github.com/colvars/colvars // Please update all Colvars source files before making any changes. // If you wish to distribute your changes, please submit them to the // Colvars repository at GitHub. #include "colvarmodule.h" #include "colvarvalue.h" #include "colvarparse.h" #include "colvar.h" #include "colvarcomp.h" colvar::orientation::orientation(std::string const &conf) : cvc() { function_type = "orientation"; disable(f_cvc_explicit_gradient); x.type(colvarvalue::type_quaternion); init(conf); } int colvar::orientation::init(std::string const &conf) { int error_code = cvc::init(conf); atoms = parse_group(conf, "atoms"); ref_pos.reserve(atoms->size()); if (get_keyval(conf, "refPositions", ref_pos, ref_pos)) { cvm::log("Using reference positions from input file.\n"); if (ref_pos.size() != atoms->size()) { return cvm::error("Error: reference positions do not " "match the number of requested atoms.\n", INPUT_ERROR); } } { std::string file_name; if (get_keyval(conf, "refPositionsFile", file_name)) { std::string file_col; double file_col_value=0.0; if (get_keyval(conf, "refPositionsCol", file_col, std::string(""))) { // use PDB flags if column is provided bool found = get_keyval(conf, "refPositionsColValue", file_col_value, 0.0); if (found && file_col_value==0.0) { return cvm::error("Error: refPositionsColValue, " "if provided, must be non-zero.\n", INPUT_ERROR); } } ref_pos.resize(atoms->size()); cvm::load_coords(file_name.c_str(), &ref_pos, atoms, file_col, file_col_value); } } if (!ref_pos.size()) { return cvm::error("Error: must define a set of " "reference coordinates.\n", INPUT_ERROR); } cvm::log("Centering the reference coordinates: it is " "assumed that each atom is the closest " "periodic image to the center of geometry.\n"); cvm::rvector ref_cog(0.0, 0.0, 0.0); size_t i; for (i = 0; i < ref_pos.size(); i++) { ref_cog += ref_pos[i]; } ref_cog /= cvm::real(ref_pos.size()); for (i = 0; i < ref_pos.size(); i++) { ref_pos[i] -= ref_cog; } get_keyval(conf, "closestToQuaternion", ref_quat, cvm::quaternion(1.0, 0.0, 0.0, 0.0)); // initialize rot member data if (!atoms->noforce) { rot.request_group2_gradients(atoms->size()); } return error_code; } colvar::orientation::orientation() : cvc() { function_type = "orientation"; disable(f_cvc_explicit_gradient); x.type(colvarvalue::type_quaternion); } void colvar::orientation::calc_value() { rot.b_debug_gradients = is_enabled(f_cvc_debug_gradient); atoms_cog = atoms->center_of_geometry(); rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog)); if ((rot.q).inner(ref_quat) >= 0.0) { x.quaternion_value = rot.q; } else { x.quaternion_value = -1.0 * rot.q; } } void colvar::orientation::calc_gradients() { // gradients have already been calculated and stored within the // member object "rot"; we're not using the "grad" member of each // atom object, because it only can represent the gradient of a // scalar colvar } void colvar::orientation::apply_force(colvarvalue const &force) { cvm::quaternion const &FQ = force.quaternion_value; if (!atoms->noforce) { for (size_t ia = 0; ia < atoms->size(); ia++) { for (size_t i = 0; i < 4; i++) { (*atoms)[ia].apply_force(FQ[i] * rot.dQ0_2[ia][i]); } } } } cvm::real colvar::orientation::dist2(colvarvalue const &x1, colvarvalue const &x2) const { return x1.quaternion_value.dist2(x2); } colvarvalue colvar::orientation::dist2_lgrad(colvarvalue const &x1, colvarvalue const &x2) const { return x1.quaternion_value.dist2_grad(x2); } colvarvalue colvar::orientation::dist2_rgrad(colvarvalue const &x1, colvarvalue const &x2) const { return x2.quaternion_value.dist2_grad(x1); } colvar::orientation_angle::orientation_angle(std::string const &conf) : orientation() { function_type = "orientation_angle"; enable(f_cvc_explicit_gradient); x.type(colvarvalue::type_scalar); init(conf); } int colvar::orientation_angle::init(std::string const &conf) { return orientation::init(conf); } colvar::orientation_angle::orientation_angle() : orientation() { function_type = "orientation_angle"; enable(f_cvc_explicit_gradient); x.type(colvarvalue::type_scalar); } void colvar::orientation_angle::calc_value() { atoms_cog = atoms->center_of_geometry(); rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog)); if ((rot.q).q0 >= 0.0) { x.real_value = (180.0/PI) * 2.0 * cvm::acos((rot.q).q0); } else { x.real_value = (180.0/PI) * 2.0 * cvm::acos(-1.0 * (rot.q).q0); } } void colvar::orientation_angle::calc_gradients() { cvm::real const dxdq0 = ( ((rot.q).q0 * (rot.q).q0 < 1.0) ? ((180.0 / PI) * (-2.0) / cvm::sqrt(1.0 - ((rot.q).q0 * (rot.q).q0))) : 0.0 ); for (size_t ia = 0; ia < atoms->size(); ia++) { (*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]); } } void colvar::orientation_angle::apply_force(colvarvalue const &force) { cvm::real const &fw = force.real_value; if (!atoms->noforce) { atoms->apply_colvar_force(fw); } } simple_scalar_dist_functions(orientation_angle) colvar::orientation_proj::orientation_proj(std::string const &conf) : orientation() { function_type = "orientation_proj"; enable(f_cvc_explicit_gradient); x.type(colvarvalue::type_scalar); init(conf); } int colvar::orientation_proj::init(std::string const &conf) { return orientation::init(conf); } colvar::orientation_proj::orientation_proj() : orientation() { function_type = "orientation_proj"; enable(f_cvc_explicit_gradient); x.type(colvarvalue::type_scalar); } void colvar::orientation_proj::calc_value() { atoms_cog = atoms->center_of_geometry(); rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog)); x.real_value = 2.0 * (rot.q).q0 * (rot.q).q0 - 1.0; } void colvar::orientation_proj::calc_gradients() { cvm::real const dxdq0 = 2.0 * 2.0 * (rot.q).q0; for (size_t ia = 0; ia < atoms->size(); ia++) { (*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]); } } void colvar::orientation_proj::apply_force(colvarvalue const &force) { cvm::real const &fw = force.real_value; if (!atoms->noforce) { atoms->apply_colvar_force(fw); } } simple_scalar_dist_functions(orientation_proj) colvar::tilt::tilt(std::string const &conf) : orientation() { function_type = "tilt"; enable(f_cvc_explicit_gradient); x.type(colvarvalue::type_scalar); init(conf); } int colvar::tilt::init(std::string const &conf) { int error_code = COLVARS_OK; error_code |= orientation::init(conf); get_keyval(conf, "axis", axis, cvm::rvector(0.0, 0.0, 1.0)); if (axis.norm2() != 1.0) { axis /= axis.norm(); cvm::log("Normalizing rotation axis to "+cvm::to_str(axis)+".\n"); } return error_code; } colvar::tilt::tilt() : orientation() { function_type = "tilt"; enable(f_cvc_explicit_gradient); x.type(colvarvalue::type_scalar); } void colvar::tilt::calc_value() { atoms_cog = atoms->center_of_geometry(); rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog)); x.real_value = rot.cos_theta(axis); } void colvar::tilt::calc_gradients() { cvm::quaternion const dxdq = rot.dcos_theta_dq(axis); for (size_t ia = 0; ia < atoms->size(); ia++) { (*atoms)[ia].grad = cvm::rvector(0.0, 0.0, 0.0); for (size_t iq = 0; iq < 4; iq++) { (*atoms)[ia].grad += (dxdq[iq] * (rot.dQ0_2[ia])[iq]); } } } void colvar::tilt::apply_force(colvarvalue const &force) { cvm::real const &fw = force.real_value; if (!atoms->noforce) { atoms->apply_colvar_force(fw); } } simple_scalar_dist_functions(tilt) colvar::spin_angle::spin_angle(std::string const &conf) : orientation() { function_type = "spin_angle"; period = 360.0; b_periodic = true; enable(f_cvc_explicit_gradient); x.type(colvarvalue::type_scalar); init(conf); } int colvar::spin_angle::init(std::string const &conf) { int error_code = COLVARS_OK; error_code |= orientation::init(conf); get_keyval(conf, "axis", axis, cvm::rvector(0.0, 0.0, 1.0)); if (axis.norm2() != 1.0) { axis /= axis.norm(); cvm::log("Normalizing rotation axis to "+cvm::to_str(axis)+".\n"); } return error_code; } colvar::spin_angle::spin_angle() : orientation() { function_type = "spin_angle"; period = 360.0; b_periodic = true; enable(f_cvc_explicit_gradient); x.type(colvarvalue::type_scalar); } void colvar::spin_angle::calc_value() { atoms_cog = atoms->center_of_geometry(); rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog)); x.real_value = rot.spin_angle(axis); this->wrap(x); } void colvar::spin_angle::calc_gradients() { cvm::quaternion const dxdq = rot.dspin_angle_dq(axis); for (size_t ia = 0; ia < atoms->size(); ia++) { (*atoms)[ia].grad = cvm::rvector(0.0, 0.0, 0.0); for (size_t iq = 0; iq < 4; iq++) { (*atoms)[ia].grad += (dxdq[iq] * (rot.dQ0_2[ia])[iq]); } } } void colvar::spin_angle::apply_force(colvarvalue const &force) { cvm::real const &fw = force.real_value; if (!atoms->noforce) { atoms->apply_colvar_force(fw); } } cvm::real colvar::spin_angle::dist2(colvarvalue const &x1, colvarvalue const &x2) const { cvm::real diff = x1.real_value - x2.real_value; diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff)); return diff * diff; } colvarvalue colvar::spin_angle::dist2_lgrad(colvarvalue const &x1, colvarvalue const &x2) const { cvm::real diff = x1.real_value - x2.real_value; diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff)); return 2.0 * diff; } colvarvalue colvar::spin_angle::dist2_rgrad(colvarvalue const &x1, colvarvalue const &x2) const { cvm::real diff = x1.real_value - x2.real_value; diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff)); return (-2.0) * diff; } void colvar::spin_angle::wrap(colvarvalue &x_unwrapped) const { if ((x_unwrapped.real_value - wrap_center) >= 180.0) { x_unwrapped.real_value -= 360.0; return; } if ((x_unwrapped.real_value - wrap_center) < -180.0) { x_unwrapped.real_value += 360.0; return; } return; }