/*************************************************************************** neighbor.h ------------------- W. Michael Brown (ORNL) Peng Wang (Nvidia) Class for handling neighbor lists __________________________________________________________________________ This file is part of the LAMMPS Accelerator Library (LAMMPS_AL) __________________________________________________________________________ begin : email : brownw@ornl.gov, penwang@nvidia.com ***************************************************************************/ #ifndef LAL_NEIGHBOR_H #define LAL_NEIGHBOR_H #include "lal_atom.h" #include "lal_neighbor_shared.h" #define IJ_SIZE 131072 namespace LAMMPS_AL { class Neighbor { public: Neighbor() : _allocated(false), _use_packing(false), _ncells(0) {} ~Neighbor() { clear(); } /// Determine whether neighbor unpacking should be used /** If false, twice as much memory is reserved to allow unpacking neighbors by * atom for coalesced access. **/ void packing(const bool use_packing) { _use_packing=use_packing; } /// Clear any old data and setup for new LAMMPS run /** \param inum Initial number of particles whose neighbors stored on device * \param host_inum Initial number of particles whose nbors copied to host * \param max_nbors Initial number of rows in the neighbor matrix * \param gpu_nbor 0 if neighboring will be performed on host * gpu_nbor 1 if neighboring will be performed on device * gpu_nbor 2 if binning on host and neighboring on device * \param gpu_host 0 if host will not perform force calculations, * 1 if gpu_nbor is true, and host needs a half nbor list, * 2 if gpu_nbor is true, and host needs a full nbor list * \param pre_cut True if cutoff test will be performed in separate kernel * than the force kernel * \param threads_per_atom Number of threads used per atom for force * calculation * \param compile_flags Flags for JIT compiling **/ bool init(NeighborShared *shared, const int inum, const int host_inum, const int max_nbors, const int maxspecial, UCL_Device &dev, const int gpu_nbor, const int gpu_host, const bool pre_cut, const int block_cell_2d, const int block_cell_id, const int block_nbor_build, const int threads_per_atom, const int warp_size, const bool time_device, const std::string compile_flags); /// Set the size of the cutoff+skin inline void cell_size(const double size, const double cutoff) { _cell_size=size; _cutoff=cutoff; if (cutoff>size) _cells_in_cutoff=static_cast(ceil(cutoff/size)); else _cells_in_cutoff=1; } /// Get the size of the cutoff+skin inline double cell_size() const { return _cell_size; } /// Check if there is enough memory for neighbor data and realloc if not /** \param inum Number of particles whose nbors will be stored on device * \param max_nbor Current max number of neighbors for a particle * \param success False if insufficient memory **/ inline void resize(const int inum, const int max_nbor, bool &success) { if (inum>_max_atoms || max_nbor>_max_nbors) { _max_atoms=static_cast(static_cast(inum)*1.10); if (max_nbor>_max_nbors) _max_nbors=static_cast(static_cast(max_nbor)*1.10); alloc(success); } } /// Check if there is enough memory for neighbor data and realloc if not /** \param inum Number of particles whose nbors will be stored on device * \param host_inum Number of particles whose nbors will be copied to host * \param max_nbor Current max number of neighbors for a particle * \param success False if insufficient memory **/ inline void resize(const int inum, const int host_inum, const int max_nbor, bool &success) { if (inum>_max_atoms || max_nbor>_max_nbors || host_inum>_max_host) { _max_atoms=static_cast(static_cast(inum)*1.10); _max_host=static_cast(static_cast(host_inum)*1.10); if (max_nbor>_max_nbors) _max_nbors=static_cast(static_cast(max_nbor)*1.10); alloc(success); } } inline void acc_timers() { if (_nbor_time_avail) { if (_gpu_nbor==2) { int mn=0; for (int i=0; i<_total_atoms; i++) mn=std::max(mn,host_acc[i]); if (mn>_max_nbors) assert(0==1); } if (_time_device) { time_nbor.add_to_total(); if (_use_packing==false) time_kernel.add_to_total(); if (_gpu_nbor==2) { time_hybrid1.add_to_total(); time_hybrid2.add_to_total(); } if (_maxspecial>0) time_transpose.add_to_total(); _nbor_time_avail=false; } } } /// Free all memory on host and device void clear(); /// Bytes per atom used on device int bytes_per_atom(const int max_nbors) const; /// Total host memory used by class double host_memory_usage() const; /// Returns the type of neighboring: /** - 0 if neighboring will be performed on host * - 1 if neighboring will be performed on device * - 2 if binning on host and neighboring on device **/ inline int gpu_nbor() const { return _gpu_nbor; } /// Make a copy of unpacked nbor lists in the packed storage area (for gb) inline void copy_unpacked(const int inum, const int maxj) { ucl_copy(dev_packed,dev_nbor,inum*(maxj+2),true); } /// Copy neighbor list from host (first time or from a rebuild) void get_host(const int inum, int *ilist, int *numj, int **firstneigh, const int block_size); /// Copy neighbor list from host for 3-body (first time or from a rebuild) void get_host3(const int inum, const int nlist, int *ilist, int *numj, int **firstneigh, const int block_size); /// Return the stride in elements for each nbor row inline int nbor_pitch() const { return _nbor_pitch; } /// Return the maximum number of atoms that can currently be stored inline int max_atoms() const { return _max_atoms; } /// Return the maximum number of nbors for a particle based on current alloc inline int max_nbors() const { return _max_nbors; } /// Return the time spent binning on the CPU for hybrid neighbor builds inline double bin_time() const { return _bin_time; } /// Loop through neighbor count array and return maximum nbors for a particle inline int max_nbor_loop(const int inum, int *numj, int *ilist) const { int mn=0; for (int i=0; i void build_nbor_list(double **x, const int inum, const int host_inum, const int nall, Atom &atom, double *sublo, double *subhi, tagint *tag, int **nspecial, tagint **special, bool &success, int &max_nbors); /// Return the number of bytes used on device inline double gpu_bytes() { double res = _gpu_bytes + _c_bytes + _cell_bytes; if (_gpu_nbor==0) res += 2*IJ_SIZE*sizeof(int); return res; } // ------------------------------- Data ------------------------------- /// Device neighbor matrix /** - 1st row is i (index into atom data) * - 2nd row is numj (number of neighbors) * - 3rd row is starting location in packed nbors * - Remaining rows are the neighbors arranged for coalesced access **/ UCL_D_Vec dev_nbor; /// Packed storage for neighbor lists copied from host UCL_D_Vec dev_packed; /// Host buffer for copying neighbor lists UCL_H_Vec host_packed; /// Host storage for nbor counts (row 1) & accumulated neighbor counts (row2) UCL_H_Vec host_acc; /// Device storage for accessing atom indices from the neighbor list (3-body) UCL_D_Vec dev_ilist; // ----------------- Data for GPU Neighbor Calculation --------------- /// Host/Device storage for device calculated neighbor lists /** - 1st row is numj * - Remaining rows are by atom, columns are nbors **/ UCL_Vector nbor_host; UCL_D_Vec dev_numj_host; UCL_H_Vec host_ilist; UCL_H_Vec host_jlist; /// Device storage for special neighbor counts UCL_D_Vec dev_nspecial; /// Device storage for special neighbors UCL_D_Vec dev_special, dev_special_t; /// Host/Device storage for number of particles per cell UCL_Vector cell_counts; int *cell_iter; /// Device timers UCL_Timer time_nbor, time_kernel, time_hybrid1, time_hybrid2, time_transpose; private: NeighborShared *_shared; UCL_Device *dev; bool _allocated, _use_packing, _nbor_time_avail, _time_device; int _gpu_nbor, _max_atoms, _max_nbors, _max_host, _nbor_pitch, _maxspecial; bool _gpu_host, _alloc_packed; double _cutoff, _cell_size, _bin_time; enum UCL_MEMOPT _packed_permissions; double _gpu_bytes, _c_bytes, _cell_bytes; void alloc(bool &success); int _block_cell_2d, _block_cell_id, _max_block_nbor_build, _block_nbor_build; int _ncells, _threads_per_atom, _total_atoms; int _cells_in_cutoff; template inline void resize_max_neighbors(const int maxn, bool &success); int _warp_size; inline void set_nbor_block_size(const int mn) { int desired=mn/(2*_warp_size); desired*=_warp_size; if (desired<_warp_size) desired=_warp_size; else if (desired>_max_block_nbor_build) desired=_max_block_nbor_build; _block_nbor_build=desired; } }; } #endif