// ************************************************************************** // re_squared_lj.cu // ------------------- // W. Michael Brown // // Device code for RE-Squared - Lennard-Jones potential acceleration // // __________________________________________________________________________ // This file is part of the LAMMPS Accelerator Library (LAMMPS_AL) // __________________________________________________________________________ // // begin : Fri May 06 2011 // email : brownw@ornl.gov // ***************************************************************************/ #ifdef NV_KERNEL #include "lal_ellipsoid_extra.h" #endif #if (ARCH < 300) #define store_answers_rt(f, tor, energy, virial, ii, astride, tid, \ t_per_atom, offset, eflag, vflag, ans, engv) \ if (t_per_atom>1) { \ __local acctyp red_acc[7][BLOCK_PAIR]; \ red_acc[0][tid]=f.x; \ red_acc[1][tid]=f.y; \ red_acc[2][tid]=f.z; \ red_acc[3][tid]=tor.x; \ red_acc[4][tid]=tor.y; \ red_acc[5][tid]=tor.z; \ for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \ if (offset < s) { \ for (int r=0; r<6; r++) \ red_acc[r][tid] += red_acc[r][tid+s]; \ } \ } \ f.x=red_acc[0][tid]; \ f.y=red_acc[1][tid]; \ f.z=red_acc[2][tid]; \ tor.x=red_acc[3][tid]; \ tor.y=red_acc[4][tid]; \ tor.z=red_acc[5][tid]; \ if (eflag>0 || vflag>0) { \ for (int r=0; r<6; r++) \ red_acc[r][tid]=virial[r]; \ red_acc[6][tid]=energy; \ for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \ if (offset < s) { \ for (int r=0; r<7; r++) \ red_acc[r][tid] += red_acc[r][tid+s]; \ } \ } \ for (int r=0; r<6; r++) \ virial[r]=red_acc[r][tid]; \ energy=red_acc[6][tid]; \ } \ } \ if (offset==0) { \ __global acctyp *ap1=engv+ii; \ if (eflag>0) { \ *ap1+=energy*(acctyp)0.5; \ ap1+=astride; \ } \ if (vflag>0) { \ for (int i=0; i<6; i++) { \ *ap1+=virial[i]*(acctyp)0.5; \ ap1+=astride; \ } \ } \ acctyp4 old=ans[ii]; \ old.x+=f.x; \ old.y+=f.y; \ old.z+=f.z; \ ans[ii]=old; \ old=ans[ii+astride]; \ old.x+=tor.x; \ old.y+=tor.y; \ old.z+=tor.z; \ ans[ii+astride]=old; \ } #else #define store_answers_rt(f, tor, energy, virial, ii, astride, tid, \ t_per_atom, offset, eflag, vflag, ans, engv) \ if (t_per_atom>1) { \ for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \ f.x += shfl_xor(f.x, s, t_per_atom); \ f.y += shfl_xor(f.y, s, t_per_atom); \ f.z += shfl_xor(f.z, s, t_per_atom); \ tor.x += shfl_xor(tor.x, s, t_per_atom); \ tor.y += shfl_xor(tor.y, s, t_per_atom); \ tor.z += shfl_xor(tor.z, s, t_per_atom); \ energy += shfl_xor(energy, s, t_per_atom); \ } \ if (vflag>0) { \ for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \ for (int r=0; r<6; r++) \ virial[r] += shfl_xor(virial[r], s, t_per_atom); \ } \ } \ } \ if (offset==0) { \ __global acctyp *ap1=engv+ii; \ if (eflag>0) { \ *ap1+=energy*(acctyp)0.5; \ ap1+=astride; \ } \ if (vflag>0) { \ for (int i=0; i<6; i++) { \ *ap1+=virial[i]*(acctyp)0.5; \ ap1+=astride; \ } \ } \ acctyp4 old=ans[ii]; \ old.x+=f.x; \ old.y+=f.y; \ old.z+=f.z; \ ans[ii]=old; \ old=ans[ii+astride]; \ old.x+=tor.x; \ old.y+=tor.y; \ old.z+=tor.z; \ ans[ii+astride]=old; \ } #endif __kernel void k_resquared_ellipsoid_sphere(const __global numtyp4 *restrict x_, const __global numtyp4 *restrict q, const __global numtyp4 *restrict shape, const __global numtyp4 *restrict well, const __global numtyp *restrict splj, const __global numtyp2 *restrict sig_eps, const int ntypes, const __global int *dev_nbor, const int stride, __global acctyp4 *restrict ans, const int astride, __global acctyp *restrict engv, __global int *restrict err_flag, const int eflag, const int vflag, const int inum, const int t_per_atom) { int tid, ii, offset; atom_info(t_per_atom,ii,tid,offset); __local numtyp sp_lj[4]; sp_lj[0]=splj[0]; sp_lj[1]=splj[1]; sp_lj[2]=splj[2]; sp_lj[3]=splj[3]; __local numtyp b_alpha, cr60, solv_f_a, solv_f_r; b_alpha=(numtyp)45.0/(numtyp)56.0; cr60=ucl_cbrt((numtyp)60.0); solv_f_a = (numtyp)3.0/((numtyp)16.0*ucl_atan((numtyp)1.0)*-(numtyp)36.0); solv_f_r = (numtyp)3.0/((numtyp)16.0*ucl_atan((numtyp)1.0)*(numtyp)2025.0); acctyp energy=(acctyp)0; acctyp4 f; f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0; acctyp4 tor; tor.x=(acctyp)0; tor.y=(acctyp)0; tor.z=(acctyp)0; acctyp virial[6]; for (int i=0; i<6; i++) virial[i]=(acctyp)0; if (iibody) numtyp aTe[9]; // A'*E numtyp lA_0[9], lA_1[9], lA_2[9]; // -A*rotation generator (x,y, or z) numtyp4 ishape; ishape=shape[itype]; numtyp ilshape=ishape.x*ishape.y*ishape.z; { gpu_quat_to_mat_trans(q,i,a); gpu_transpose_times_diag3(a,well[itype],aTe); gpu_rotation_generator_x(a,lA_0); gpu_rotation_generator_y(a,lA_1); gpu_rotation_generator_z(a,lA_2); } numtyp factor_lj; for ( ; nbor0) virial[0]+=-r[0]*force; } else if (i==1) { f.y+=force; if (vflag>0) { virial[1]+=-r[1]*force; virial[3]+=-r[0]*force; } } else { f.z+=force; if (vflag>0) { virial[2]+=-r[2]*force; virial[4]+=-r[0]*force; virial[5]+=-r[1]*force; } } } // torque on i numtyp fwae[3]; gpu_row_times3(fourw,aTe,fwae); { numtyp tempv[3], p[3], lAtwo[9]; gpu_times_column3(lA_0,rhat,p); gpu_times_column3(lA_0,w,tempv); numtyp dchi = -gpu_dot3(fwae,tempv); gpu_times3(aTs,lA_0,lAtwo); gpu_times_column3(lAtwo,spr,tempv); numtyp dh12 = -gpu_dot3(s,tempv); numtyp dUa = pbsu*dchi-dh12*dspu; numtyp dUr = pbsr*dchi-dh12*dspr; tor.x -= (dUa*Ua+dUr*Ur); } { numtyp tempv[3], p[3], lAtwo[9]; gpu_times_column3(lA_1,rhat,p); gpu_times_column3(lA_1,w,tempv); numtyp dchi = -gpu_dot3(fwae,tempv); gpu_times3(aTs,lA_1,lAtwo); gpu_times_column3(lAtwo,spr,tempv); numtyp dh12 = -gpu_dot3(s,tempv); numtyp dUa = pbsu*dchi-dh12*dspu; numtyp dUr = pbsr*dchi-dh12*dspr; tor.y -= (dUa*Ua+dUr*Ur); } { numtyp tempv[3], p[3], lAtwo[9]; gpu_times_column3(lA_2,rhat,p); gpu_times_column3(lA_2,w,tempv); numtyp dchi = -gpu_dot3(fwae,tempv); gpu_times3(aTs,lA_2,lAtwo); gpu_times_column3(lAtwo,spr,tempv); numtyp dh12 = -gpu_dot3(s,tempv); numtyp dUa = pbsu*dchi-dh12*dspu; numtyp dUr = pbsr*dchi-dh12*dspr; tor.z -= (dUa*Ua+dUr*Ur); } } // for nbor store_answers_rt(f,tor,energy,virial,ii,astride,tid,t_per_atom,offset,eflag, vflag,ans,engv); } // if ii } __kernel void k_resquared_sphere_ellipsoid(const __global numtyp4 *restrict x_, const __global numtyp4 *restrict q, const __global numtyp4 *restrict shape, const __global numtyp4 *restrict well, const __global numtyp *restrict splj, const __global numtyp2 *restrict sig_eps, const int ntypes, const __global int *dev_nbor, const int stride, __global acctyp4 *restrict ans, __global acctyp *restrict engv, __global int *restrict err_flag, const int eflag, const int vflag, const int start, const int inum, const int t_per_atom) { int tid, ii, offset; atom_info(t_per_atom,ii,tid,offset); ii+=start; __local numtyp sp_lj[4]; sp_lj[0]=splj[0]; sp_lj[1]=splj[1]; sp_lj[2]=splj[2]; sp_lj[3]=splj[3]; __local numtyp b_alpha, cr60, solv_f_a, solv_f_r; b_alpha=(numtyp)45.0/(numtyp)56.0; cr60=ucl_cbrt((numtyp)60.0); solv_f_a = (numtyp)3.0/((numtyp)16.0*ucl_atan((numtyp)1.0)*-(numtyp)36.0); solv_f_r = (numtyp)3.0/((numtyp)16.0*ucl_atan((numtyp)1.0)*(numtyp)2025.0); acctyp energy=(acctyp)0; acctyp4 f; f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0; acctyp virial[6]; for (int i=0; i<6; i++) virial[i]=(acctyp)0; if (iibody) numtyp aTe[9]; // A'*E numtyp4 ishape; ishape=shape[itype]; gpu_quat_to_mat_trans(q,i,a); gpu_transpose_times_diag3(a,well[itype],aTe); // Compute r12 numtyp r[3], rhat[3]; numtyp rnorm; r[0] = ix.x-jx.x; r[1] = ix.y-jx.y; r[2] = ix.z-jx.z; rnorm = gpu_dot3(r,r); rnorm = ucl_rsqrt(rnorm); rhat[0] = r[0]*rnorm; rhat[1] = r[1]*rnorm; rhat[2] = r[2]*rnorm; numtyp sigma, epsilon; int mtype=fast_mul(ntypes,itype)+jtype; sigma = sig_eps[mtype].x; epsilon = sig_eps[mtype].y*factor_lj; numtyp aTs[9]; numtyp4 scorrect; numtyp half_sigma=sigma * (numtyp)0.5; scorrect.x = ishape.x+half_sigma; scorrect.y = ishape.y+half_sigma; scorrect.z = ishape.z+half_sigma; scorrect.x = scorrect.x * scorrect.x * (numtyp)0.5; scorrect.y = scorrect.y * scorrect.y * (numtyp)0.5; scorrect.z = scorrect.z * scorrect.z * (numtyp)0.5; gpu_transpose_times_diag3(a,scorrect,aTs); // energy numtyp gamma[9], s[3]; gpu_times3(aTs,a,gamma); gpu_mldivide3(gamma,rhat,s,err_flag); numtyp sigma12 = ucl_rsqrt((numtyp)0.5*gpu_dot3(s,rhat)); numtyp temp[9], w[3]; gpu_times3(aTe,a,temp); temp[0] += (numtyp)1.0; temp[4] += (numtyp)1.0; temp[8] += (numtyp)1.0; gpu_mldivide3(temp,rhat,w,err_flag); numtyp h12 = ucl_recip(rnorm)-sigma12; numtyp chi = (numtyp)2.0*gpu_dot3(rhat,w); numtyp sigh = sigma/h12; numtyp tprod = chi*sigh; numtyp Ua, Ur; numtyp h12p3 = h12*h12*h12; numtyp sigmap3 = sigma*sigma*sigma; numtyp stemp = h12/(numtyp)2.0; Ua = (ishape.x+stemp)*(ishape.y+stemp)*(ishape.z+stemp)*h12p3/(numtyp)8.0; numtyp ilshape=ishape.x*ishape.y*ishape.z; Ua = ((numtyp)1.0+(numtyp)3.0*tprod)*ilshape/Ua; Ua = epsilon*Ua*sigmap3*solv_f_a; stemp = h12/cr60; Ur = (ishape.x+stemp)*(ishape.y+stemp)*(ishape.z+stemp)*h12p3/ (numtyp)60.0; Ur = ((numtyp)1.0+b_alpha*tprod)*ilshape/Ur; numtyp sigh6=sigh*sigh*sigh; sigh6*=sigh6; Ur = epsilon*Ur*sigmap3*sigh6*solv_f_r; energy+=Ua+Ur; // force numtyp fourw[3], spr[3]; numtyp sec = sigma*chi; numtyp sigma12p3 = sigma12*sigma12*sigma12; fourw[0] = (numtyp)4.0*w[0]; fourw[1] = (numtyp)4.0*w[1]; fourw[2] = (numtyp)4.0*w[2]; spr[0] = (numtyp)0.5*sigma12p3*s[0]; spr[1] = (numtyp)0.5*sigma12p3*s[1]; spr[2] = (numtyp)0.5*sigma12p3*s[2]; stemp = ucl_recip(ishape.x*(numtyp)2.0+h12)+ ucl_recip(ishape.y*(numtyp)2.0+h12)+ ucl_recip(ishape.z*(numtyp)2.0+h12)+ (numtyp)3.0/h12; numtyp hsec = ucl_recip(h12+(numtyp)3.0*sec); numtyp dspu = ucl_recip(h12)-hsec+stemp; numtyp pbsu = (numtyp)3.0*sigma*hsec; stemp = ucl_recip(ishape.x*cr60+h12)+ ucl_recip(ishape.y*cr60+h12)+ ucl_recip(ishape.z*cr60+h12)+ (numtyp)3.0/h12; hsec = ucl_recip(h12+b_alpha*sec); numtyp dspr = (numtyp)7.0/h12-hsec+stemp; numtyp pbsr = b_alpha*sigma*hsec; #pragma unroll for (int i=0; i<3; i++) { numtyp u[3]; u[0] = -rhat[i]*rhat[0]; u[1] = -rhat[i]*rhat[1]; u[2] = -rhat[i]*rhat[2]; u[i] += (numtyp)1.0; u[0] *= rnorm; u[1] *= rnorm; u[2] *= rnorm; numtyp dchi = gpu_dot3(u,fourw); numtyp dh12 = rhat[i]+gpu_dot3(u,spr); numtyp dUa = pbsu*dchi-dh12*dspu; numtyp dUr = pbsr*dchi-dh12*dspr; numtyp force=dUr*Ur+dUa*Ua; if (i==0) { f.x+=force; if (vflag>0) virial[0]+=-r[0]*force; } else if (i==1) { f.y+=force; if (vflag>0) { virial[1]+=-r[1]*force; virial[3]+=-r[0]*force; } } else { f.z+=force; if (vflag>0) { virial[2]+=-r[2]*force; virial[4]+=-r[0]*force; virial[5]+=-r[1]*force; } } } } // for nbor store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv); } // if ii } __kernel void k_resquared_lj(const __global numtyp4 *restrict x_, const __global numtyp4 *restrict lj1, const __global numtyp4 *restrict lj3, const int lj_types, const __global numtyp *restrict gum, const int stride, const __global int *dev_ij, __global acctyp4 *restrict ans, __global acctyp *restrict engv, __global int *restrict err_flag, const int eflag, const int vflag, const int start, const int inum, const int t_per_atom) { int tid, ii, offset; atom_info(t_per_atom,ii,tid,offset); ii+=start; __local numtyp sp_lj[4]; sp_lj[0]=gum[0]; sp_lj[1]=gum[1]; sp_lj[2]=gum[2]; sp_lj[3]=gum[3]; acctyp energy=(acctyp)0; acctyp4 f; f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0; acctyp virial[6]; for (int i=0; i<6; i++) virial[i]=(acctyp)0; if (ii0) { numtyp e=r6inv*(lj3[ii].x*r6inv-lj3[ii].y); energy+=factor_lj*(e-lj3[ii].z); } if (vflag>0) { virial[0] += delx*delx*force; virial[1] += dely*dely*force; virial[2] += delz*delz*force; virial[3] += delx*dely*force; virial[4] += delx*delz*force; virial[5] += dely*delz*force; } } } // for nbor acc_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv); } // if ii } __kernel void k_resquared_lj_fast(const __global numtyp4 *restrict x_, const __global numtyp4 *restrict lj1_in, const __global numtyp4 *restrict lj3_in, const __global numtyp *restrict gum, const int stride, const __global int *dev_ij, __global acctyp4 *restrict ans, __global acctyp *restrict engv, __global int *restrict err_flag, const int eflag, const int vflag, const int start, const int inum, const int t_per_atom) { int tid, ii, offset; atom_info(t_per_atom,ii,tid,offset); ii+=start; __local numtyp sp_lj[4]; __local numtyp4 lj1[MAX_SHARED_TYPES*MAX_SHARED_TYPES]; __local numtyp4 lj3[MAX_SHARED_TYPES*MAX_SHARED_TYPES]; if (tid<4) sp_lj[tid]=gum[tid]; if (tid0) lj3[tid]=lj3_in[tid]; } acctyp energy=(acctyp)0; acctyp4 f; f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0; acctyp virial[6]; for (int i=0; i<6; i++) virial[i]=(acctyp)0; __syncthreads(); if (ii0) { numtyp e=r6inv*(lj3[mtype].x*r6inv-lj3[mtype].y); energy+=factor_lj*(e-lj3[mtype].z); } if (vflag>0) { virial[0] += delx*delx*force; virial[1] += dely*dely*force; virial[2] += delz*delz*force; virial[3] += delx*dely*force; virial[4] += delx*delz*force; virial[5] += dely*delz*force; } } } // for nbor acc_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv); } // if ii }