/* //@HEADER // ************************************************************************ // // Kokkos v. 2.0 // Copyright (2014) Sandia Corporation // // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, // the U.S. Government retains certain rights in this software. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the Corporation nor the names of the // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Questions? Contact Christian R. Trott (crtrott@sandia.gov) // // ************************************************************************ //@HEADER */ #include #include #include #include #include #include /*--------------------------------------------------------------------------*/ /*--------------------------------------------------------------------------*/ namespace Test { template< class T , class ... P > size_t allocation_count( const Kokkos::DynRankView & view ) { const size_t card = view.size(); const size_t alloc = view.span(); return card <= alloc ? alloc : 0 ; } /*--------------------------------------------------------------------------*/ template< typename T, class DeviceType> struct TestViewOperator { typedef DeviceType execution_space ; static const unsigned N = 100 ; static const unsigned D = 3 ; typedef Kokkos::DynRankView< T , execution_space > view_type ; const view_type v1 ; const view_type v2 ; TestViewOperator() : v1( "v1" , N , D ) , v2( "v2" , N , D ) {} static void testit() { Kokkos::parallel_for( N , TestViewOperator() ); } KOKKOS_INLINE_FUNCTION void operator()( const unsigned i ) const { const unsigned X = 0 ; const unsigned Y = 1 ; const unsigned Z = 2 ; v2(i,X) = v1(i,X); v2(i,Y) = v1(i,Y); v2(i,Z) = v1(i,Z); } }; /*--------------------------------------------------------------------------*/ template< class DataType , class DeviceType , unsigned Rank > struct TestViewOperator_LeftAndRight ; template< class DataType , class DeviceType > struct TestViewOperator_LeftAndRight< DataType , DeviceType , 7 > { typedef DeviceType execution_space ; typedef typename execution_space::memory_space memory_space ; typedef typename execution_space::size_type size_type ; typedef int value_type ; KOKKOS_INLINE_FUNCTION static void join( volatile value_type & update , const volatile value_type & input ) { update |= input ; } KOKKOS_INLINE_FUNCTION static void init( value_type & update ) { update = 0 ; } typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ; typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ; left_view left ; right_view right ; long left_alloc ; long right_alloc ; TestViewOperator_LeftAndRight(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4, unsigned N5, unsigned N6 ) : left( "left" , N0, N1, N2, N3, N4, N5, N6 ) , right( "right" , N0, N1, N2, N3, N4, N5, N6 ) , left_alloc( allocation_count( left ) ) , right_alloc( allocation_count( right ) ) {} static void testit(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4, unsigned N5, unsigned N6 ) { TestViewOperator_LeftAndRight driver(N0, N1, N2, N3, N4, N5, N6 ); int error_flag = 0 ; Kokkos::parallel_reduce( 1 , driver , error_flag ); ASSERT_EQ( error_flag , 0 ); } KOKKOS_INLINE_FUNCTION void operator()( const size_type , value_type & update ) const { long offset ; offset = -1 ; for ( unsigned i6 = 0 ; i6 < unsigned(left.extent(6)) ; ++i6 ) for ( unsigned i5 = 0 ; i5 < unsigned(left.extent(5)) ; ++i5 ) for ( unsigned i4 = 0 ; i4 < unsigned(left.extent(4)) ; ++i4 ) for ( unsigned i3 = 0 ; i3 < unsigned(left.extent(3)) ; ++i3 ) for ( unsigned i2 = 0 ; i2 < unsigned(left.extent(2)) ; ++i2 ) for ( unsigned i1 = 0 ; i1 < unsigned(left.extent(1)) ; ++i1 ) for ( unsigned i0 = 0 ; i0 < unsigned(left.extent(0)) ; ++i0 ) { const long j = & left( i0, i1, i2, i3, i4, i5, i6 ) - & left( 0, 0, 0, 0, 0, 0, 0 ); if ( j <= offset || left_alloc <= j ) { update |= 1 ; } offset = j ; } offset = -1 ; for ( unsigned i0 = 0 ; i0 < unsigned(right.extent(0)) ; ++i0 ) for ( unsigned i1 = 0 ; i1 < unsigned(right.extent(1)) ; ++i1 ) for ( unsigned i2 = 0 ; i2 < unsigned(right.extent(2)) ; ++i2 ) for ( unsigned i3 = 0 ; i3 < unsigned(right.extent(3)) ; ++i3 ) for ( unsigned i4 = 0 ; i4 < unsigned(right.extent(4)) ; ++i4 ) for ( unsigned i5 = 0 ; i5 < unsigned(right.extent(5)) ; ++i5 ) for ( unsigned i6 = 0 ; i6 < unsigned(right.extent(6)) ; ++i6 ) { const long j = & right( i0, i1, i2, i3, i4, i5, i6 ) - & right( 0, 0, 0, 0, 0, 0, 0 ); if ( j <= offset || right_alloc <= j ) { update |= 2 ; } offset = j ; } } }; template< class DataType , class DeviceType > struct TestViewOperator_LeftAndRight< DataType , DeviceType , 6 > { typedef DeviceType execution_space ; typedef typename execution_space::memory_space memory_space ; typedef typename execution_space::size_type size_type ; typedef int value_type ; KOKKOS_INLINE_FUNCTION static void join( volatile value_type & update , const volatile value_type & input ) { update |= input ; } KOKKOS_INLINE_FUNCTION static void init( value_type & update ) { update = 0 ; } typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ; typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ; left_view left ; right_view right ; long left_alloc ; long right_alloc ; TestViewOperator_LeftAndRight(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4, unsigned N5 ) : left( "left" , N0, N1, N2, N3, N4, N5 ) , right( "right" , N0, N1, N2, N3, N4, N5 ) , left_alloc( allocation_count( left ) ) , right_alloc( allocation_count( right ) ) {} static void testit(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4, unsigned N5) { TestViewOperator_LeftAndRight driver (N0, N1, N2, N3, N4, N5); int error_flag = 0 ; Kokkos::parallel_reduce( 1 , driver , error_flag ); ASSERT_EQ( error_flag , 0 ); } KOKKOS_INLINE_FUNCTION void operator()( const size_type , value_type & update ) const { long offset ; offset = -1 ; for ( unsigned i5 = 0 ; i5 < unsigned(left.extent(5)) ; ++i5 ) for ( unsigned i4 = 0 ; i4 < unsigned(left.extent(4)) ; ++i4 ) for ( unsigned i3 = 0 ; i3 < unsigned(left.extent(3)) ; ++i3 ) for ( unsigned i2 = 0 ; i2 < unsigned(left.extent(2)) ; ++i2 ) for ( unsigned i1 = 0 ; i1 < unsigned(left.extent(1)) ; ++i1 ) for ( unsigned i0 = 0 ; i0 < unsigned(left.extent(0)) ; ++i0 ) { const long j = & left( i0, i1, i2, i3, i4, i5 ) - & left( 0, 0, 0, 0, 0, 0 ); if ( j <= offset || left_alloc <= j ) { update |= 1 ; } offset = j ; } offset = -1 ; for ( unsigned i0 = 0 ; i0 < unsigned(right.extent(0)) ; ++i0 ) for ( unsigned i1 = 0 ; i1 < unsigned(right.extent(1)) ; ++i1 ) for ( unsigned i2 = 0 ; i2 < unsigned(right.extent(2)) ; ++i2 ) for ( unsigned i3 = 0 ; i3 < unsigned(right.extent(3)) ; ++i3 ) for ( unsigned i4 = 0 ; i4 < unsigned(right.extent(4)) ; ++i4 ) for ( unsigned i5 = 0 ; i5 < unsigned(right.extent(5)) ; ++i5 ) { const long j = & right( i0, i1, i2, i3, i4, i5 ) - & right( 0, 0, 0, 0, 0, 0 ); if ( j <= offset || right_alloc <= j ) { update |= 2 ; } offset = j ; } } }; template< class DataType , class DeviceType > struct TestViewOperator_LeftAndRight< DataType , DeviceType , 5 > { typedef DeviceType execution_space ; typedef typename execution_space::memory_space memory_space ; typedef typename execution_space::size_type size_type ; typedef int value_type ; KOKKOS_INLINE_FUNCTION static void join( volatile value_type & update , const volatile value_type & input ) { update |= input ; } KOKKOS_INLINE_FUNCTION static void init( value_type & update ) { update = 0 ; } typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ; typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ; typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutStride, execution_space > stride_view ; left_view left ; right_view right ; stride_view left_stride ; stride_view right_stride ; long left_alloc ; long right_alloc ; TestViewOperator_LeftAndRight(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4 ) : left( "left" , N0, N1, N2, N3, N4 ) , right( "right" , N0, N1, N2, N3, N4 ) , left_stride( left ) , right_stride( right ) , left_alloc( allocation_count( left ) ) , right_alloc( allocation_count( right ) ) {} static void testit(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4) { TestViewOperator_LeftAndRight driver(N0, N1, N2, N3, N4); int error_flag = 0 ; Kokkos::parallel_reduce( 1 , driver , error_flag ); ASSERT_EQ( error_flag , 0 ); } KOKKOS_INLINE_FUNCTION void operator()( const size_type , value_type & update ) const { long offset ; offset = -1 ; for ( unsigned i4 = 0 ; i4 < unsigned(left.extent(4)) ; ++i4 ) for ( unsigned i3 = 0 ; i3 < unsigned(left.extent(3)) ; ++i3 ) for ( unsigned i2 = 0 ; i2 < unsigned(left.extent(2)) ; ++i2 ) for ( unsigned i1 = 0 ; i1 < unsigned(left.extent(1)) ; ++i1 ) for ( unsigned i0 = 0 ; i0 < unsigned(left.extent(0)) ; ++i0 ) { const long j = & left( i0, i1, i2, i3, i4 ) - & left( 0, 0, 0, 0, 0 ); if ( j <= offset || left_alloc <= j ) { update |= 1 ; } offset = j ; if ( & left( i0, i1, i2, i3, i4 ) != & left_stride( i0, i1, i2, i3, i4 ) ) { update |= 4 ; } } offset = -1 ; for ( unsigned i0 = 0 ; i0 < unsigned(right.extent(0)) ; ++i0 ) for ( unsigned i1 = 0 ; i1 < unsigned(right.extent(1)) ; ++i1 ) for ( unsigned i2 = 0 ; i2 < unsigned(right.extent(2)) ; ++i2 ) for ( unsigned i3 = 0 ; i3 < unsigned(right.extent(3)) ; ++i3 ) for ( unsigned i4 = 0 ; i4 < unsigned(right.extent(4)) ; ++i4 ) { const long j = & right( i0, i1, i2, i3, i4 ) - & right( 0, 0, 0, 0, 0 ); if ( j <= offset || right_alloc <= j ) { update |= 2 ; } offset = j ; if ( & right( i0, i1, i2, i3, i4 ) != & right_stride( i0, i1, i2, i3, i4 ) ) { update |= 8 ; } } } }; template< class DataType , class DeviceType > struct TestViewOperator_LeftAndRight< DataType , DeviceType , 4 > { typedef DeviceType execution_space ; typedef typename execution_space::memory_space memory_space ; typedef typename execution_space::size_type size_type ; typedef int value_type ; KOKKOS_INLINE_FUNCTION static void join( volatile value_type & update , const volatile value_type & input ) { update |= input ; } KOKKOS_INLINE_FUNCTION static void init( value_type & update ) { update = 0 ; } typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ; typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ; left_view left ; right_view right ; long left_alloc ; long right_alloc ; TestViewOperator_LeftAndRight(unsigned N0, unsigned N1, unsigned N2, unsigned N3) : left( "left" , N0, N1, N2, N3 ) , right( "right" , N0, N1, N2, N3 ) , left_alloc( allocation_count( left ) ) , right_alloc( allocation_count( right ) ) {} static void testit(unsigned N0, unsigned N1, unsigned N2, unsigned N3) { TestViewOperator_LeftAndRight driver (N0, N1, N2, N3); int error_flag = 0 ; Kokkos::parallel_reduce( 1 , driver , error_flag ); ASSERT_EQ( error_flag , 0 ); } KOKKOS_INLINE_FUNCTION void operator()( const size_type , value_type & update ) const { long offset ; offset = -1 ; for ( unsigned i3 = 0 ; i3 < unsigned(left.extent(3)) ; ++i3 ) for ( unsigned i2 = 0 ; i2 < unsigned(left.extent(2)) ; ++i2 ) for ( unsigned i1 = 0 ; i1 < unsigned(left.extent(1)) ; ++i1 ) for ( unsigned i0 = 0 ; i0 < unsigned(left.extent(0)) ; ++i0 ) { const long j = & left( i0, i1, i2, i3 ) - & left( 0, 0, 0, 0 ); if ( j <= offset || left_alloc <= j ) { update |= 1 ; } offset = j ; } offset = -1 ; for ( unsigned i0 = 0 ; i0 < unsigned(right.extent(0)) ; ++i0 ) for ( unsigned i1 = 0 ; i1 < unsigned(right.extent(1)) ; ++i1 ) for ( unsigned i2 = 0 ; i2 < unsigned(right.extent(2)) ; ++i2 ) for ( unsigned i3 = 0 ; i3 < unsigned(right.extent(3)) ; ++i3 ) { const long j = & right( i0, i1, i2, i3 ) - & right( 0, 0, 0, 0 ); if ( j <= offset || right_alloc <= j ) { update |= 2 ; } offset = j ; } } }; template< class DataType , class DeviceType > struct TestViewOperator_LeftAndRight< DataType , DeviceType , 3 > { typedef DeviceType execution_space ; typedef typename execution_space::memory_space memory_space ; typedef typename execution_space::size_type size_type ; typedef int value_type ; KOKKOS_INLINE_FUNCTION static void join( volatile value_type & update , const volatile value_type & input ) { update |= input ; } KOKKOS_INLINE_FUNCTION static void init( value_type & update ) { update = 0 ; } typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ; typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ; typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutStride, execution_space > stride_view ; left_view left ; right_view right ; stride_view left_stride ; stride_view right_stride ; long left_alloc ; long right_alloc ; TestViewOperator_LeftAndRight(unsigned N0, unsigned N1, unsigned N2) : left( std::string("left") , N0, N1, N2 ) , right( std::string("right") , N0, N1, N2 ) , left_stride( left ) , right_stride( right ) , left_alloc( allocation_count( left ) ) , right_alloc( allocation_count( right ) ) {} static void testit(unsigned N0, unsigned N1, unsigned N2) { TestViewOperator_LeftAndRight driver (N0, N1, N2); int error_flag = 0 ; Kokkos::parallel_reduce( 1 , driver , error_flag ); ASSERT_EQ( error_flag , 0 ); } KOKKOS_INLINE_FUNCTION void operator()( const size_type , value_type & update ) const { long offset ; offset = -1 ; for ( unsigned i2 = 0 ; i2 < unsigned(left.extent(2)) ; ++i2 ) for ( unsigned i1 = 0 ; i1 < unsigned(left.extent(1)) ; ++i1 ) for ( unsigned i0 = 0 ; i0 < unsigned(left.extent(0)) ; ++i0 ) { const long j = & left( i0, i1, i2 ) - & left( 0, 0, 0 ); if ( j <= offset || left_alloc <= j ) { update |= 1 ; } offset = j ; if ( & left(i0,i1,i2) != & left_stride(i0,i1,i2) ) { update |= 4 ; } } offset = -1 ; for ( unsigned i0 = 0 ; i0 < unsigned(right.extent(0)) ; ++i0 ) for ( unsigned i1 = 0 ; i1 < unsigned(right.extent(1)) ; ++i1 ) for ( unsigned i2 = 0 ; i2 < unsigned(right.extent(2)) ; ++i2 ) { const long j = & right( i0, i1, i2 ) - & right( 0, 0, 0 ); if ( j <= offset || right_alloc <= j ) { update |= 2 ; } offset = j ; if ( & right(i0,i1,i2) != & right_stride(i0,i1,i2) ) { update |= 8 ; } } for ( unsigned i0 = 0 ; i0 < unsigned(left.extent(0)) ; ++i0 ) for ( unsigned i1 = 0 ; i1 < unsigned(left.extent(1)) ; ++i1 ) for ( unsigned i2 = 0 ; i2 < unsigned(left.extent(2)) ; ++i2 ) { if ( & left(i0,i1,i2) != & left(i0,i1,i2,0,0,0,0) ) { update |= 3 ; } if ( & right(i0,i1,i2) != & right(i0,i1,i2,0,0,0,0) ) { update |= 3 ; } } } }; template< class DataType , class DeviceType > struct TestViewOperator_LeftAndRight< DataType , DeviceType , 2 > { typedef DeviceType execution_space ; typedef typename execution_space::memory_space memory_space ; typedef typename execution_space::size_type size_type ; typedef int value_type ; KOKKOS_INLINE_FUNCTION static void join( volatile value_type & update , const volatile value_type & input ) { update |= input ; } KOKKOS_INLINE_FUNCTION static void init( value_type & update ) { update = 0 ; } typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ; typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ; left_view left ; right_view right ; long left_alloc ; long right_alloc ; TestViewOperator_LeftAndRight(unsigned N0, unsigned N1) : left( "left" , N0, N1 ) , right( "right" , N0, N1 ) , left_alloc( allocation_count( left ) ) , right_alloc( allocation_count( right ) ) {} static void testit(unsigned N0, unsigned N1) { TestViewOperator_LeftAndRight driver(N0, N1); int error_flag = 0 ; Kokkos::parallel_reduce( 1 , driver , error_flag ); ASSERT_EQ( error_flag , 0 ); } KOKKOS_INLINE_FUNCTION void operator()( const size_type , value_type & update ) const { long offset ; offset = -1 ; for ( unsigned i1 = 0 ; i1 < unsigned(left.extent(1)) ; ++i1 ) for ( unsigned i0 = 0 ; i0 < unsigned(left.extent(0)) ; ++i0 ) { const long j = & left( i0, i1 ) - & left( 0, 0 ); if ( j <= offset || left_alloc <= j ) { update |= 1 ; } offset = j ; } offset = -1 ; for ( unsigned i0 = 0 ; i0 < unsigned(right.extent(0)) ; ++i0 ) for ( unsigned i1 = 0 ; i1 < unsigned(right.extent(1)) ; ++i1 ) { const long j = & right( i0, i1 ) - & right( 0, 0 ); if ( j <= offset || right_alloc <= j ) { update |= 2 ; } offset = j ; } for ( unsigned i0 = 0 ; i0 < unsigned(left.extent(0)) ; ++i0 ) for ( unsigned i1 = 0 ; i1 < unsigned(left.extent(1)) ; ++i1 ) { if ( & left(i0,i1) != & left(i0,i1,0,0,0,0,0) ) { update |= 3 ; } if ( & right(i0,i1) != & right(i0,i1,0,0,0,0,0) ) { update |= 3 ; } } } }; template< class DataType , class DeviceType > struct TestViewOperator_LeftAndRight< DataType , DeviceType , 1 > { typedef DeviceType execution_space ; typedef typename execution_space::memory_space memory_space ; typedef typename execution_space::size_type size_type ; typedef int value_type ; KOKKOS_INLINE_FUNCTION static void join( volatile value_type & update , const volatile value_type & input ) { update |= input ; } KOKKOS_INLINE_FUNCTION static void init( value_type & update ) { update = 0 ; } typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ; typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ; typedef Kokkos:: DynRankView< DataType, Kokkos::LayoutStride, execution_space > stride_view ; left_view left ; right_view right ; stride_view left_stride ; stride_view right_stride ; long left_alloc ; long right_alloc ; TestViewOperator_LeftAndRight(unsigned N0) : left( "left" , N0 ) , right( "right" , N0 ) , left_stride( left ) , right_stride( right ) , left_alloc( allocation_count( left ) ) , right_alloc( allocation_count( right ) ) {} static void testit(unsigned N0) { TestViewOperator_LeftAndRight driver (N0) ; int error_flag = 0 ; Kokkos::parallel_reduce( 1 , driver , error_flag ); ASSERT_EQ( error_flag , 0 ); } KOKKOS_INLINE_FUNCTION void operator()( const size_type , value_type & update ) const { for ( unsigned i0 = 0 ; i0 < unsigned(left.extent(0)) ; ++i0 ) { if ( & left(i0) != & left(i0,0,0,0,0,0,0) ) { update |= 3 ; } if ( & right(i0) != & right(i0,0,0,0,0,0,0) ) { update |= 3 ; } if ( & left(i0) != & left_stride(i0) ) { update |= 4 ; } if ( & right(i0) != & right_stride(i0) ) { update |= 8 ; } } } }; /*--------------------------------------------------------------------------*/ template< typename T, class DeviceType > class TestDynViewAPI { public: typedef DeviceType device ; enum { N0 = 1000 , N1 = 3 , N2 = 5 , N3 = 7 }; typedef Kokkos::DynRankView< T , device > dView0 ; typedef Kokkos::DynRankView< const T , device > const_dView0 ; typedef Kokkos::DynRankView< T, device, Kokkos::MemoryUnmanaged > dView0_unmanaged ; typedef typename dView0::host_mirror_space host_drv_space ; typedef Kokkos::View< T , device > View0 ; typedef Kokkos::View< T* , device > View1 ; typedef Kokkos::View< T******* , device > View7 ; typedef typename View0::host_mirror_space host_view_space ; TestDynViewAPI() { } static void run_tests() { run_test_resize_realloc(); run_test_mirror(); run_test_mirror_and_copy(); run_test_scalar(); run_test(); run_test_const(); run_test_subview(); run_test_subview_strided(); run_test_vector(); } static void run_operator_test_rank12345 () { TestViewOperator< T , device >::testit(); TestViewOperator_LeftAndRight< int , device , 5 >::testit(2,3,4,2,3); TestViewOperator_LeftAndRight< int , device , 4 >::testit(2,3,4,2); TestViewOperator_LeftAndRight< int , device , 3 >::testit(2,3,4); TestViewOperator_LeftAndRight< int , device , 2 >::testit(2,3); TestViewOperator_LeftAndRight< int , device , 1 >::testit(2); } static void run_operator_test_rank67 () { TestViewOperator_LeftAndRight< int , device , 7 >::testit(2,3,4,2,3,4,2); TestViewOperator_LeftAndRight< int , device , 6 >::testit(2,3,4,2,3,4); } static void run_test_resize_realloc() { dView0 drv0("drv0", 10, 20, 30); ASSERT_EQ( drv0.rank(), 3); Kokkos::resize(drv0, 5, 10); ASSERT_EQ( drv0.rank(), 2); ASSERT_EQ( drv0.extent(0), 5); ASSERT_EQ( drv0.extent(1), 10); ASSERT_EQ( drv0.extent(2), 1); Kokkos::realloc(drv0, 10, 20); ASSERT_EQ( drv0.rank(), 2); ASSERT_EQ( drv0.extent(0), 10); ASSERT_EQ( drv0.extent(1), 20); ASSERT_EQ( drv0.extent(2), 1); } static void run_test_mirror() { typedef Kokkos::DynRankView< int , host_drv_space > view_type ; typedef typename view_type::HostMirror mirror_type ; view_type a("a"); mirror_type am = Kokkos::create_mirror_view(a); mirror_type ax = Kokkos::create_mirror(a); ASSERT_EQ( & a() , & am() ); ASSERT_EQ( a.rank() , am.rank() ); ASSERT_EQ( ax.rank() , am.rank() ); { Kokkos::DynRankView a_h("A",1000); auto a_h2 = Kokkos::create_mirror(Kokkos::HostSpace(),a_h); auto a_d = Kokkos::create_mirror(typename device::memory_space(),a_h); int equal_ptr_h_h2 = (a_h.data() ==a_h2.data())?1:0; int equal_ptr_h_d = (a_h.data() ==a_d. data())?1:0; int equal_ptr_h2_d = (a_h2.data()==a_d. data())?1:0; ASSERT_EQ(equal_ptr_h_h2,0); ASSERT_EQ(equal_ptr_h_d ,0); ASSERT_EQ(equal_ptr_h2_d,0); ASSERT_EQ(a_h.extent(0),a_h2.extent(0)); ASSERT_EQ(a_h.extent(0),a_d .extent(0)); ASSERT_EQ(a_h.rank(),a_h2.rank()); ASSERT_EQ(a_h.rank(),a_d.rank()); } { Kokkos::DynRankView a_h("A",1000); auto a_h2 = Kokkos::create_mirror(Kokkos::HostSpace(),a_h); auto a_d = Kokkos::create_mirror(typename device::memory_space(),a_h); int equal_ptr_h_h2 = (a_h.data() ==a_h2.data())?1:0; int equal_ptr_h_d = (a_h.data() ==a_d. data())?1:0; int equal_ptr_h2_d = (a_h2.data()==a_d. data())?1:0; ASSERT_EQ(equal_ptr_h_h2,0); ASSERT_EQ(equal_ptr_h_d ,0); ASSERT_EQ(equal_ptr_h2_d,0); ASSERT_EQ(a_h.extent(0),a_h2.extent(0)); ASSERT_EQ(a_h.extent(0),a_d .extent(0)); ASSERT_EQ(a_h.rank(),a_h2.rank()); ASSERT_EQ(a_h.rank(),a_d.rank()); } { Kokkos::DynRankView a_h("A",1000); auto a_h2 = Kokkos::create_mirror_view(Kokkos::HostSpace(),a_h); auto a_d = Kokkos::create_mirror_view(typename device::memory_space(),a_h); int equal_ptr_h_h2 = a_h.data() ==a_h2.data()?1:0; int equal_ptr_h_d = a_h.data() ==a_d. data()?1:0; int equal_ptr_h2_d = a_h2.data()==a_d. data()?1:0; int is_same_memspace = std::is_same::value?1:0; ASSERT_EQ(equal_ptr_h_h2,1); ASSERT_EQ(equal_ptr_h_d ,is_same_memspace); ASSERT_EQ(equal_ptr_h2_d ,is_same_memspace); ASSERT_EQ(a_h.extent(0),a_h2.extent(0)); ASSERT_EQ(a_h.extent(0),a_d .extent(0)); ASSERT_EQ(a_h.rank(),a_h2.rank()); ASSERT_EQ(a_h.rank(),a_d.rank()); } { Kokkos::DynRankView a_h("A",1000); auto a_h2 = Kokkos::create_mirror_view(Kokkos::HostSpace(),a_h); auto a_d = Kokkos::create_mirror_view(typename device::memory_space(),a_h); int equal_ptr_h_h2 = a_h.data() ==a_h2.data()?1:0; int equal_ptr_h_d = a_h.data() ==a_d. data()?1:0; int equal_ptr_h2_d = a_h2.data()==a_d. data()?1:0; int is_same_memspace = std::is_same::value?1:0; ASSERT_EQ(equal_ptr_h_h2,1); ASSERT_EQ(equal_ptr_h_d ,is_same_memspace); ASSERT_EQ(equal_ptr_h2_d ,is_same_memspace); ASSERT_EQ(a_h.extent(0),a_h2.extent(0)); ASSERT_EQ(a_h.extent(0),a_d .extent(0)); ASSERT_EQ(a_h.rank(),a_h2.rank()); ASSERT_EQ(a_h.rank(),a_d.rank()); } { typedef Kokkos::DynRankView< int , Kokkos::LayoutStride , Kokkos::HostSpace > view_stride_type ; unsigned order[] = { 6,5,4,3,2,1,0 }, dimen[] = { N0, N1, N2, 2, 2, 2, 2 }; //LayoutRight equivalent view_stride_type a_h( "a" , Kokkos::LayoutStride::order_dimensions(7, order, dimen) ); auto a_h2 = Kokkos::create_mirror_view(Kokkos::HostSpace(),a_h); auto a_d = Kokkos::create_mirror_view(typename device::memory_space(),a_h); int equal_ptr_h_h2 = a_h.data() ==a_h2.data()?1:0; int equal_ptr_h_d = a_h.data() ==a_d. data()?1:0; int equal_ptr_h2_d = a_h2.data()==a_d. data()?1:0; int is_same_memspace = std::is_same::value?1:0; ASSERT_EQ(equal_ptr_h_h2,1); ASSERT_EQ(equal_ptr_h_d ,is_same_memspace); ASSERT_EQ(equal_ptr_h2_d ,is_same_memspace); ASSERT_EQ(a_h.extent(0),a_h2.extent(0)); ASSERT_EQ(a_h.extent(0),a_d .extent(0)); ASSERT_EQ(a_h.rank(),a_h2.rank()); ASSERT_EQ(a_h.rank(),a_d.rank()); } } static void run_test_mirror_and_copy() { // LayoutLeft { Kokkos::DynRankView< double, Kokkos::LayoutLeft, Kokkos::HostSpace > a_org( "A", 10 ); a_org(5) = 42.0; Kokkos::DynRankView< double, Kokkos::LayoutLeft, Kokkos::HostSpace > a_h = a_org; auto a_h2 = Kokkos::create_mirror_view_and_copy( Kokkos::HostSpace(), a_h ); auto a_d = Kokkos::create_mirror_view_and_copy( DeviceType(), a_h ); auto a_h3 = Kokkos::create_mirror_view_and_copy( Kokkos::HostSpace(), a_d ); int equal_ptr_h_h2 = a_h.data() == a_h2.data() ? 1 : 0; int equal_ptr_h_d = a_h.data() == a_d.data() ? 1 : 0; int equal_ptr_h2_d = a_h2.data() == a_d.data() ? 1 : 0; int equal_ptr_h3_d = a_h3.data() == a_d.data() ? 1 : 0; int is_same_memspace = std::is_same< Kokkos::HostSpace, typename DeviceType::memory_space >::value ? 1 : 0; ASSERT_EQ( equal_ptr_h_h2, 1 ); ASSERT_EQ( equal_ptr_h_d, is_same_memspace ); ASSERT_EQ( equal_ptr_h2_d, is_same_memspace ); ASSERT_EQ( equal_ptr_h3_d, is_same_memspace ); ASSERT_EQ( a_h.extent(0), a_h3.extent(0) ); ASSERT_EQ( a_h.extent(0), a_h2.extent(0) ); ASSERT_EQ( a_h.extent(0), a_d .extent(0) ); ASSERT_EQ( a_h.extent(0), a_h3.extent(0) ); ASSERT_EQ( a_h.rank(), a_org.rank() ); ASSERT_EQ( a_h.rank(), a_h2.rank() ); ASSERT_EQ( a_h.rank(), a_h3.rank() ); ASSERT_EQ( a_h.rank(), a_d.rank() ); ASSERT_EQ( a_org(5), a_h3(5) ); } // LayoutRight { Kokkos::DynRankView< double, Kokkos::LayoutRight, Kokkos::HostSpace > a_org( "A", 10 ); a_org(5) = 42.0; Kokkos::DynRankView< double, Kokkos::LayoutRight, Kokkos::HostSpace > a_h = a_org; auto a_h2 = Kokkos::create_mirror_view_and_copy( Kokkos::HostSpace(), a_h ); auto a_d = Kokkos::create_mirror_view_and_copy( DeviceType(), a_h ); auto a_h3 = Kokkos::create_mirror_view_and_copy( Kokkos::HostSpace(), a_d ); int equal_ptr_h_h2 = a_h.data() == a_h2.data() ? 1 : 0; int equal_ptr_h_d = a_h.data() == a_d.data() ? 1 : 0; int equal_ptr_h2_d = a_h2.data() == a_d.data() ? 1 : 0; int equal_ptr_h3_d = a_h3.data() == a_d.data() ? 1 : 0; int is_same_memspace = std::is_same< Kokkos::HostSpace, typename DeviceType::memory_space >::value ? 1 : 0; ASSERT_EQ( equal_ptr_h_h2, 1 ); ASSERT_EQ( equal_ptr_h_d, is_same_memspace ); ASSERT_EQ( equal_ptr_h2_d, is_same_memspace ); ASSERT_EQ( equal_ptr_h3_d, is_same_memspace ); ASSERT_EQ( a_h.extent(0), a_h3.extent(0) ); ASSERT_EQ( a_h.extent(0), a_h2.extent(0) ); ASSERT_EQ( a_h.extent(0), a_d .extent(0) ); ASSERT_EQ( a_h.rank(), a_org.rank() ); ASSERT_EQ( a_h.rank(), a_h2.rank() ); ASSERT_EQ( a_h.rank(), a_h3.rank() ); ASSERT_EQ( a_h.rank(), a_d.rank() ); ASSERT_EQ( a_org(5), a_h3(5) ); } } static void run_test_scalar() { typedef typename dView0::HostMirror hView0 ; //HostMirror of DynRankView is a DynRankView dView0 dx , dy ; hView0 hx , hy ; dx = dView0( "dx" ); dy = dView0( "dy" ); hx = Kokkos::create_mirror( dx ); hy = Kokkos::create_mirror( dy ); hx() = 1 ; Kokkos::deep_copy( dx , hx ); Kokkos::deep_copy( dy , dx ); Kokkos::deep_copy( hy , dy ); ASSERT_EQ( hx(), hy() ); ASSERT_EQ( dx.rank() , hx.rank() ); ASSERT_EQ( dy.rank() , hy.rank() ); //View - DynRankView Interoperability tests // deep_copy DynRankView to View View0 vx("vx"); Kokkos::deep_copy( vx , dx ); ASSERT_EQ( rank(dx) , rank(vx) ); View0 vy("vy"); Kokkos::deep_copy( vy , dy ); ASSERT_EQ( rank(dy) , rank(vy) ); // deep_copy View to DynRankView dView0 dxx("dxx"); Kokkos::deep_copy( dxx , vx ); ASSERT_EQ( rank(dxx) , rank(vx) ); View7 vcast = dx.ConstDownCast(); ASSERT_EQ( dx.extent(0) , vcast.extent(0) ); ASSERT_EQ( dx.extent(1) , vcast.extent(1) ); ASSERT_EQ( dx.extent(2) , vcast.extent(2) ); ASSERT_EQ( dx.extent(3) , vcast.extent(3) ); ASSERT_EQ( dx.extent(4) , vcast.extent(4) ); View7 vcast1( dy.ConstDownCast() ); ASSERT_EQ( dy.extent(0) , vcast1.extent(0) ); ASSERT_EQ( dy.extent(1) , vcast1.extent(1) ); ASSERT_EQ( dy.extent(2) , vcast1.extent(2) ); ASSERT_EQ( dy.extent(3) , vcast1.extent(3) ); ASSERT_EQ( dy.extent(4) , vcast1.extent(4) ); //View - DynRankView Interoperability tests // copy View to DynRankView dView0 dfromvx( vx ); auto hmx = Kokkos::create_mirror_view(dfromvx) ; Kokkos::deep_copy(hmx , dfromvx); auto hvx = Kokkos::create_mirror_view(vx) ; Kokkos::deep_copy(hvx , vx); ASSERT_EQ( rank(hvx) , rank(hmx) ); ASSERT_EQ( hvx.extent(0) , hmx.extent(0) ); ASSERT_EQ( hvx.extent(1) , hmx.extent(1) ); // copy-assign View to DynRankView dView0 dfromvy = vy ; auto hmy = Kokkos::create_mirror_view(dfromvy) ; Kokkos::deep_copy(hmy , dfromvy); auto hvy = Kokkos::create_mirror_view(vy) ; Kokkos::deep_copy(hvy , vy); ASSERT_EQ( rank(hvy) , rank(hmy) ); ASSERT_EQ( hvy.extent(0) , hmy.extent(0) ); ASSERT_EQ( hvy.extent(1) , hmy.extent(1) ); View7 vtest1("vtest1",2,2,2,2,2,2,2); dView0 dfromv1( vtest1 ); ASSERT_EQ( dfromv1.rank() , vtest1.Rank ); ASSERT_EQ( dfromv1.extent(0) , vtest1.extent(0) ); ASSERT_EQ( dfromv1.extent(1) , vtest1.extent(1) ); ASSERT_EQ( dfromv1.use_count() , vtest1.use_count() ); dView0 dfromv2( vcast ); ASSERT_EQ( dfromv2.rank() , vcast.Rank ); ASSERT_EQ( dfromv2.extent(0) , vcast.extent(0) ); ASSERT_EQ( dfromv2.extent(1) , vcast.extent(1) ); ASSERT_EQ( dfromv2.use_count() , vcast.use_count() ); dView0 dfromv3 = vcast1; ASSERT_EQ( dfromv3.rank() , vcast1.Rank ); ASSERT_EQ( dfromv3.extent(0) , vcast1.extent(0) ); ASSERT_EQ( dfromv3.extent(1) , vcast1.extent(1) ); ASSERT_EQ( dfromv3.use_count() , vcast1.use_count() ); } static void run_test() { // mfh 14 Feb 2014: This test doesn't actually create instances of // these types. In order to avoid "declared but unused typedef" // warnings, we declare empty instances of these types, with the // usual "(void)" marker to avoid compiler warnings for unused // variables. typedef typename dView0::HostMirror hView0 ; { hView0 thing; (void) thing; } dView0 d_uninitialized(Kokkos::ViewAllocateWithoutInitializing("uninit"),10,20); ASSERT_TRUE( d_uninitialized.data() != nullptr ); ASSERT_EQ( d_uninitialized.rank() , 2 ); ASSERT_EQ( d_uninitialized.extent(0) , 10 ); ASSERT_EQ( d_uninitialized.extent(1) , 20 ); ASSERT_EQ( d_uninitialized.extent(2) , 1 ); dView0 dx , dy , dz ; hView0 hx , hy , hz ; ASSERT_TRUE( Kokkos::is_dyn_rank_view::value ); ASSERT_FALSE( Kokkos::is_dyn_rank_view< Kokkos::View >::value ); ASSERT_TRUE( dx.data() == 0 ); //Okay with UVM ASSERT_TRUE( dy.data() == 0 ); //Okay with UVM ASSERT_TRUE( dz.data() == 0 ); //Okay with UVM ASSERT_TRUE( hx.data() == 0 ); ASSERT_TRUE( hy.data() == 0 ); ASSERT_TRUE( hz.data() == 0 ); ASSERT_EQ( dx.extent(0) , 0u ); //Okay with UVM ASSERT_EQ( dy.extent(0) , 0u ); //Okay with UVM ASSERT_EQ( dz.extent(0) , 0u ); //Okay with UVM ASSERT_EQ( hx.extent(0) , 0u ); ASSERT_EQ( hy.extent(0) , 0u ); ASSERT_EQ( hz.extent(0) , 0u ); ASSERT_EQ( dx.rank() , 0u ); //Okay with UVM ASSERT_EQ( hx.rank() , 0u ); dx = dView0( "dx" , N1 , N2 , N3 ); dy = dView0( "dy" , N1 , N2 , N3 ); hx = hView0( "hx" , N1 , N2 , N3 ); hy = hView0( "hy" , N1 , N2 , N3 ); ASSERT_EQ( dx.extent(0) , unsigned(N1) ); //Okay with UVM ASSERT_EQ( dy.extent(0) , unsigned(N1) ); //Okay with UVM ASSERT_EQ( hx.extent(0) , unsigned(N1) ); ASSERT_EQ( hy.extent(0) , unsigned(N1) ); ASSERT_EQ( dx.rank() , 3 ); //Okay with UVM ASSERT_EQ( hx.rank() , 3 ); dx = dView0( "dx" , N0 , N1 , N2 , N3 ); dy = dView0( "dy" , N0 , N1 , N2 , N3 ); hx = hView0( "hx" , N0 , N1 , N2 , N3 ); hy = hView0( "hy" , N0 , N1 , N2 , N3 ); ASSERT_EQ( dx.extent(0) , unsigned(N0) ); ASSERT_EQ( dy.extent(0) , unsigned(N0) ); ASSERT_EQ( hx.extent(0) , unsigned(N0) ); ASSERT_EQ( hy.extent(0) , unsigned(N0) ); ASSERT_EQ( dx.rank() , 4 ); ASSERT_EQ( dy.rank() , 4 ); ASSERT_EQ( hx.rank() , 4 ); ASSERT_EQ( hy.rank() , 4 ); ASSERT_EQ( dx.use_count() , size_t(1) ); dView0_unmanaged unmanaged_dx = dx; ASSERT_EQ( dx.use_count() , size_t(1) ); dView0_unmanaged unmanaged_from_ptr_dx = dView0_unmanaged(dx.data(), dx.extent(0), dx.extent(1), dx.extent(2), dx.extent(3)); { // Destruction of this view should be harmless const_dView0 unmanaged_from_ptr_const_dx( dx.data() , dx.extent(0) , dx.extent(1) , dx.extent(2) , dx.extent(3) ); } const_dView0 const_dx = dx ; ASSERT_EQ( dx.use_count() , size_t(2) ); { const_dView0 const_dx2; const_dx2 = const_dx; ASSERT_EQ( dx.use_count() , size_t(3) ); const_dx2 = dy; ASSERT_EQ( dx.use_count() , size_t(2) ); const_dView0 const_dx3(dx); ASSERT_EQ( dx.use_count() , size_t(3) ); dView0_unmanaged dx4_unmanaged(dx); ASSERT_EQ( dx.use_count() , size_t(3) ); } ASSERT_EQ( dx.use_count() , size_t(2) ); ASSERT_FALSE( dx.data() == 0 ); ASSERT_FALSE( const_dx.data() == 0 ); ASSERT_FALSE( unmanaged_dx.data() == 0 ); ASSERT_FALSE( unmanaged_from_ptr_dx.data() == 0 ); ASSERT_FALSE( dy.data() == 0 ); ASSERT_NE( dx , dy ); ASSERT_EQ( dx.extent(0) , unsigned(N0) ); ASSERT_EQ( dx.extent(1) , unsigned(N1) ); ASSERT_EQ( dx.extent(2) , unsigned(N2) ); ASSERT_EQ( dx.extent(3) , unsigned(N3) ); ASSERT_EQ( dy.extent(0) , unsigned(N0) ); ASSERT_EQ( dy.extent(1) , unsigned(N1) ); ASSERT_EQ( dy.extent(2) , unsigned(N2) ); ASSERT_EQ( dy.extent(3) , unsigned(N3) ); ASSERT_EQ( unmanaged_from_ptr_dx.span(),unsigned(N0)*unsigned(N1)*unsigned(N2)*unsigned(N3) ); hx = Kokkos::create_mirror( dx ); hy = Kokkos::create_mirror( dy ); ASSERT_EQ( hx.rank() , dx.rank() ); ASSERT_EQ( hy.rank() , dy.rank() ); ASSERT_EQ( hx.extent(0) , unsigned(N0) ); ASSERT_EQ( hx.extent(1) , unsigned(N1) ); ASSERT_EQ( hx.extent(2) , unsigned(N2) ); ASSERT_EQ( hx.extent(3) , unsigned(N3) ); ASSERT_EQ( hy.extent(0) , unsigned(N0) ); ASSERT_EQ( hy.extent(1) , unsigned(N1) ); ASSERT_EQ( hy.extent(2) , unsigned(N2) ); ASSERT_EQ( hy.extent(3) , unsigned(N3) ); // T v1 = hx() ; // Generates compile error as intended // T v2 = hx(0,0) ; // Generates compile error as intended // hx(0,0) = v2 ; // Generates compile error as intended #if 0 /* Asynchronous deep copies not implemented for dynamic rank view */ // Testing with asynchronous deep copy with respect to device { size_t count = 0 ; for ( size_t ip = 0 ; ip < N0 ; ++ip ) { for ( size_t i1 = 0 ; i1 < hx.extent(1) ; ++i1 ) { for ( size_t i2 = 0 ; i2 < hx.extent(2) ; ++i2 ) { for ( size_t i3 = 0 ; i3 < hx.extent(3) ; ++i3 ) { hx(ip,i1,i2,i3) = ++count ; }}}} Kokkos::deep_copy(typename hView0::execution_space(), dx , hx ); Kokkos::deep_copy(typename hView0::execution_space(), dy , dx ); Kokkos::deep_copy(typename hView0::execution_space(), hy , dy ); for ( size_t ip = 0 ; ip < N0 ; ++ip ) { for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) { for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) { for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) { { ASSERT_EQ( hx(ip,i1,i2,i3) , hy(ip,i1,i2,i3) ); } }}}} Kokkos::deep_copy(typename hView0::execution_space(), dx , T(0) ); Kokkos::deep_copy(typename hView0::execution_space(), hx , dx ); for ( size_t ip = 0 ; ip < N0 ; ++ip ) { for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) { for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) { for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) { { ASSERT_EQ( hx(ip,i1,i2,i3) , T(0) ); } }}}} } // Testing with asynchronous deep copy with respect to host { size_t count = 0 ; for ( size_t ip = 0 ; ip < N0 ; ++ip ) { for ( size_t i1 = 0 ; i1 < hx.extent(1) ; ++i1 ) { for ( size_t i2 = 0 ; i2 < hx.extent(2) ; ++i2 ) { for ( size_t i3 = 0 ; i3 < hx.extent(3) ; ++i3 ) { hx(ip,i1,i2,i3) = ++count ; }}}} Kokkos::deep_copy(typename dView0::execution_space(), dx , hx ); Kokkos::deep_copy(typename dView0::execution_space(), dy , dx ); Kokkos::deep_copy(typename dView0::execution_space(), hy , dy ); for ( size_t ip = 0 ; ip < N0 ; ++ip ) { for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) { for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) { for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) { { ASSERT_EQ( hx(ip,i1,i2,i3) , hy(ip,i1,i2,i3) ); } }}}} Kokkos::deep_copy(typename dView0::execution_space(), dx , T(0) ); Kokkos::deep_copy(typename dView0::execution_space(), hx , dx ); for ( size_t ip = 0 ; ip < N0 ; ++ip ) { for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) { for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) { for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) { { ASSERT_EQ( hx(ip,i1,i2,i3) , T(0) ); } }}}} } #endif // Testing with synchronous deep copy { size_t count = 0 ; for ( size_t ip = 0 ; ip < N0 ; ++ip ) { for ( size_t i1 = 0 ; i1 < hx.extent(1) ; ++i1 ) { for ( size_t i2 = 0 ; i2 < hx.extent(2) ; ++i2 ) { for ( size_t i3 = 0 ; i3 < hx.extent(3) ; ++i3 ) { hx(ip,i1,i2,i3) = ++count ; }}}} Kokkos::deep_copy( dx , hx ); Kokkos::deep_copy( dy , dx ); Kokkos::deep_copy( hy , dy ); Kokkos::fence(); for ( size_t ip = 0 ; ip < N0 ; ++ip ) { for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) { for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) { for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) { { ASSERT_EQ( hx(ip,i1,i2,i3) , hy(ip,i1,i2,i3) ); } }}}} Kokkos::deep_copy( dx , T(0) ); Kokkos::deep_copy( hx , dx ); Kokkos::fence(); for ( size_t ip = 0 ; ip < N0 ; ++ip ) { for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) { for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) { for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) { { ASSERT_EQ( hx(ip,i1,i2,i3) , T(0) ); } }}}} // ASSERT_EQ( hx(0,0,0,0,0,0,0,0) , T(0) ); //Test rank8 op behaves properly - if implemented } dz = dx ; ASSERT_EQ( dx, dz); ASSERT_NE( dy, dz); dz = dy ; ASSERT_EQ( dy, dz); ASSERT_NE( dx, dz); dx = dView0(); ASSERT_TRUE( dx.data() == 0 ); ASSERT_FALSE( dy.data() == 0 ); ASSERT_FALSE( dz.data() == 0 ); dy = dView0(); ASSERT_TRUE( dx.data() == 0 ); ASSERT_TRUE( dy.data() == 0 ); ASSERT_FALSE( dz.data() == 0 ); dz = dView0(); ASSERT_TRUE( dx.data() == 0 ); ASSERT_TRUE( dy.data() == 0 ); ASSERT_TRUE( dz.data() == 0 ); //View - DynRankView Interoperability tests // deep_copy from view to dynrankview const int testdim = 4; dView0 dxx("dxx",testdim); View1 vxx("vxx",testdim); auto hvxx = Kokkos::create_mirror_view(vxx); for (int i = 0; i < testdim; ++i) { hvxx(i) = i; } Kokkos::deep_copy(vxx,hvxx); Kokkos::deep_copy(dxx,vxx); auto hdxx = Kokkos::create_mirror_view(dxx); Kokkos::deep_copy(hdxx,dxx); for (int i = 0; i < testdim; ++i) { ASSERT_EQ( hvxx(i) , hdxx(i) ); } ASSERT_EQ( rank(hdxx) , rank(hvxx) ); ASSERT_EQ( hdxx.extent(0) , testdim ); ASSERT_EQ( hdxx.extent(0) , hvxx.extent(0) ); // deep_copy from dynrankview to view View1 vdxx("vdxx",testdim); auto hvdxx = Kokkos::create_mirror_view(vdxx); Kokkos::deep_copy(hvdxx , hdxx); ASSERT_EQ( rank(hdxx) , rank(hvdxx) ); ASSERT_EQ( hvdxx.extent(0) , testdim ); ASSERT_EQ( hdxx.extent(0) , hvdxx.extent(0) ); for (int i = 0; i < testdim; ++i) { ASSERT_EQ( hvxx(i) , hvdxx(i) ); } } typedef T DataType ; static void check_auto_conversion_to_const( const Kokkos::DynRankView< const DataType , device > & arg_const , const Kokkos::DynRankView< DataType , device > & arg ) { ASSERT_TRUE( arg_const == arg ); } static void run_test_const() { typedef Kokkos::DynRankView< DataType , device > typeX ; typedef Kokkos::DynRankView< const DataType , device > const_typeX ; typedef Kokkos::DynRankView< const DataType , device , Kokkos::MemoryRandomAccess > const_typeR ; typeX x( "X", 2 ); const_typeX xc = x ; const_typeR xr = x ; ASSERT_TRUE( xc == x ); ASSERT_TRUE( x == xc ); // For CUDA the constant random access View does not return // an lvalue reference due to retrieving through texture cache // therefore not allowed to query the underlying pointer. #if defined(KOKKOS_ENABLE_CUDA) if ( ! std::is_same< typename device::execution_space , Kokkos::Cuda >::value ) #endif { ASSERT_TRUE( x.data() == xr.data() ); } // typeX xf = xc ; // setting non-const from const must not compile check_auto_conversion_to_const( x , x ); } static void run_test_subview() { typedef Kokkos::DynRankView< const T , device > cdView ; typedef Kokkos::DynRankView< T , device > dView ; // LayoutStride required for all returned DynRankView subdynrankview's typedef Kokkos::DynRankView< T , Kokkos::LayoutStride , device > sdView ; dView0 d0( "d0" ); cdView s0 = d0 ; // N0 = 1000,N1 = 3,N2 = 5,N3 = 7 unsigned order[] = { 6,5,4,3,2,1,0 }, dimen[] = { N0, N1, N2, 2, 2, 2, 2 }; //LayoutRight equivalent sdView d7( "d7" , Kokkos::LayoutStride::order_dimensions(7, order, dimen) ); ASSERT_EQ( d7.rank() , 7 ); sdView ds0 = Kokkos::subdynrankview( d7 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ); ASSERT_EQ( ds0.rank() , 0 ); //Basic test - ALL sdView dsALL = Kokkos::subdynrankview( d7 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() ); ASSERT_EQ( dsALL.rank() , 7 ); // Send a value to final rank returning rank 6 subview sdView dsm1 = Kokkos::subdynrankview( d7 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , 1 ); ASSERT_EQ( dsm1.rank() , 6 ); // Send a std::pair as argument to a rank sdView dssp = Kokkos::subdynrankview( d7 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , std::pair(1,2) ); ASSERT_EQ( dssp.rank() , 7 ); // Send a kokkos::pair as argument to a rank; take default layout as input dView0 dd0("dd0" , N0 , N1 , N2 , 2 , 2 , 2 , 2 ); //default layout ASSERT_EQ( dd0.rank() , 7 ); sdView dtkp = Kokkos::subdynrankview( dd0 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::pair(0,1) ); ASSERT_EQ( dtkp.rank() , 7 ); // Return rank 7 subview, taking a pair as one argument, layout stride input sdView ds7 = Kokkos::subdynrankview( d7 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::pair(0,1) ); ASSERT_EQ( ds7.rank() , 7 ); // Default Layout DynRankView dView dv6("dv6" , N0 , N1 , N2 , N3 , 2 , 2 ); ASSERT_EQ( dv6.rank() , 6 ); // DynRankView with LayoutRight typedef Kokkos::DynRankView< T , Kokkos::LayoutRight , device > drView ; drView dr5( "dr5" , N0 , N1 , N2 , 2 , 2 ); ASSERT_EQ( dr5.rank() , 5 ); // LayoutStride but arranged as LayoutRight // NOTE: unused arg_layout dimensions must be set toKOKKOS_INVALID_INDEX so that // rank deduction can properly take place unsigned order5[] = { 4,3,2,1,0 }, dimen5[] = { N0, N1, N2, 2, 2 }; Kokkos::LayoutStride ls = Kokkos::LayoutStride::order_dimensions(5, order5, dimen5); ls.dimension[5] =KOKKOS_INVALID_INDEX; ls.dimension[6] =KOKKOS_INVALID_INDEX; ls.dimension[7] =KOKKOS_INVALID_INDEX; sdView d5("d5", ls); ASSERT_EQ( d5.rank() , 5 ); // LayoutStride arranged as LayoutRight - commented out as example that fails unit test // unsigned order5[] = { 4,3,2,1,0 }, dimen5[] = { N0, N1, N2, 2, 2 }; // sdView d5( "d5" , Kokkos::LayoutStride::order_dimensions(5, order5, dimen5) ); // // Fails the following unit test: // ASSERT_EQ( d5.rank() , dr5.rank() ); // // Explanation: In construction of the Kokkos::LayoutStride below, since the // remaining dimensions are not specified, they will default to values of 0 // rather thanKOKKOS_INVALID_INDEX. // When passed to the DynRankView constructor the default dimensions (of 0) // will be counted toward the dynamic rank and returning an incorrect value // (i.e. rank 7 rather than 5). // Check LayoutRight dr5 and LayoutStride d5 dimensions agree (as they should) ASSERT_EQ( d5.extent(0) , dr5.extent(0) ); ASSERT_EQ( d5.extent(1) , dr5.extent(1) ); ASSERT_EQ( d5.extent(2) , dr5.extent(2) ); ASSERT_EQ( d5.extent(3) , dr5.extent(3) ); ASSERT_EQ( d5.extent(4) , dr5.extent(4) ); ASSERT_EQ( d5.extent(5) , dr5.extent(5) ); ASSERT_EQ( d5.rank() , dr5.rank() ); // Rank 5 subview of rank 5 dynamic rank view, layout stride input sdView ds5 = Kokkos::subdynrankview( d5 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::pair(0,1) ); ASSERT_EQ( ds5.rank() , 5 ); // Pass in extra ALL arguments beyond the rank of the DynRank View. // This behavior is allowed - ignore the extra ALL arguments when // the src.rank() < number of arguments, but be careful! sdView ds5plus = Kokkos::subdynrankview( d5 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::pair(0,1) , Kokkos::ALL() ); ASSERT_EQ( ds5.rank() , ds5plus.rank() ); ASSERT_EQ( ds5.extent(0) , ds5plus.extent(0) ); ASSERT_EQ( ds5.extent(4) , ds5plus.extent(4) ); ASSERT_EQ( ds5.extent(5) , ds5plus.extent(5) ); #if ! defined( KOKKOS_ENABLE_CUDA ) || defined ( KOKKOS_ENABLE_CUDA_UVM ) ASSERT_EQ( & ds5(1,1,1,1,0) - & ds5plus(1,1,1,1,0) , 0 ); ASSERT_EQ( & ds5(1,1,1,1,0,0) - & ds5plus(1,1,1,1,0,0) , 0 ); // passing argument to rank beyond the view's rank is allowed iff it is a 0. #endif // Similar test to rank 5 above, but create rank 4 subview // Check that the rank contracts (ds4 and ds4plus) and that subdynrankview can accept extra args (ds4plus) sdView ds4 = Kokkos::subdynrankview( d5 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , 0 ); sdView ds4plus = Kokkos::subdynrankview( d5 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , 0 , Kokkos::ALL() ); ASSERT_EQ( ds4.rank() , ds4plus.rank() ); ASSERT_EQ( ds4.rank() , 4 ); ASSERT_EQ( ds4.extent(0) , ds4plus.extent(0) ); ASSERT_EQ( ds4.extent(4) , ds4plus.extent(4) ); ASSERT_EQ( ds4.extent(5) , ds4plus.extent(5) ); } static void run_test_subview_strided() { typedef Kokkos::DynRankView < int , Kokkos::LayoutLeft , host_drv_space > drview_left ; typedef Kokkos::DynRankView < int , Kokkos::LayoutRight , host_drv_space > drview_right ; typedef Kokkos::DynRankView < int , Kokkos::LayoutStride , host_drv_space > drview_stride ; drview_left xl2( "xl2", 100 , 200 ); drview_right xr2( "xr2", 100 , 200 ); drview_stride yl1 = Kokkos::subdynrankview( xl2 , 0 , Kokkos::ALL() ); drview_stride yl2 = Kokkos::subdynrankview( xl2 , 1 , Kokkos::ALL() ); drview_stride ys1 = Kokkos::subdynrankview( xr2 , 0 , Kokkos::ALL() ); drview_stride ys2 = Kokkos::subdynrankview( xr2 , 1 , Kokkos::ALL() ); drview_stride yr1 = Kokkos::subdynrankview( xr2 , 0 , Kokkos::ALL() ); drview_stride yr2 = Kokkos::subdynrankview( xr2 , 1 , Kokkos::ALL() ); ASSERT_EQ( yl1.extent(0) , xl2.extent(1) ); ASSERT_EQ( yl2.extent(0) , xl2.extent(1) ); ASSERT_EQ( yr1.extent(0) , xr2.extent(1) ); ASSERT_EQ( yr2.extent(0) , xr2.extent(1) ); ASSERT_EQ( & yl1(0) - & xl2(0,0) , 0 ); ASSERT_EQ( & yl2(0) - & xl2(1,0) , 0 ); ASSERT_EQ( & yr1(0) - & xr2(0,0) , 0 ); ASSERT_EQ( & yr2(0) - & xr2(1,0) , 0 ); drview_left xl4( "xl4", 10 , 20 , 30 , 40 ); drview_right xr4( "xr4", 10 , 20 , 30 , 40 ); //Replace subdynrankview with subview - test drview_stride yl4 = Kokkos::subview( xl4 , 1 , Kokkos::ALL() , 2 , Kokkos::ALL() ); drview_stride yr4 = Kokkos::subview( xr4 , 1 , Kokkos::ALL() , 2 , Kokkos::ALL() ); ASSERT_EQ( yl4.extent(0) , xl4.extent(1) ); ASSERT_EQ( yl4.extent(1) , xl4.extent(3) ); ASSERT_EQ( yr4.extent(0) , xr4.extent(1) ); ASSERT_EQ( yr4.extent(1) , xr4.extent(3) ); ASSERT_EQ( yl4.rank() , 2); ASSERT_EQ( yr4.rank() , 2); ASSERT_EQ( & yl4(4,4) - & xl4(1,4,2,4) , 0 ); ASSERT_EQ( & yr4(4,4) - & xr4(1,4,2,4) , 0 ); } static void run_test_vector() { static const unsigned Length = 1000 , Count = 8 ; typedef typename Kokkos::DynRankView< T , Kokkos::LayoutLeft , host_drv_space > multivector_type ; typedef typename Kokkos::DynRankView< T , Kokkos::LayoutRight , host_drv_space > multivector_right_type ; multivector_type mv = multivector_type( "mv" , Length , Count ); multivector_right_type mv_right = multivector_right_type( "mv" , Length , Count ); typedef typename Kokkos::DynRankView< T , Kokkos::LayoutStride , host_drv_space > svector_type ; typedef typename Kokkos::DynRankView< T , Kokkos::LayoutStride , host_drv_space > smultivector_type ; typedef typename Kokkos::DynRankView< const T , Kokkos::LayoutStride , host_drv_space > const_svector_right_type ; typedef typename Kokkos::DynRankView< const T , Kokkos::LayoutStride , host_drv_space > const_svector_type ; typedef typename Kokkos::DynRankView< const T , Kokkos::LayoutStride , host_drv_space > const_smultivector_type ; svector_type v1 = Kokkos::subdynrankview( mv , Kokkos::ALL() , 0 ); svector_type v2 = Kokkos::subdynrankview( mv , Kokkos::ALL() , 1 ); svector_type v3 = Kokkos::subdynrankview( mv , Kokkos::ALL() , 2 ); svector_type rv1 = Kokkos::subdynrankview( mv_right , 0 , Kokkos::ALL() ); svector_type rv2 = Kokkos::subdynrankview( mv_right , 1 , Kokkos::ALL() ); svector_type rv3 = Kokkos::subdynrankview( mv_right , 2 , Kokkos::ALL() ); smultivector_type mv1 = Kokkos::subdynrankview( mv , std::make_pair( 1 , 998 ) , std::make_pair( 2 , 5 ) ); smultivector_type mvr1 = Kokkos::subdynrankview( mv_right , std::make_pair( 1 , 998 ) , std::make_pair( 2 , 5 ) ); const_svector_type cv1 = Kokkos::subdynrankview( mv , Kokkos::ALL(), 0 ); const_svector_type cv2 = Kokkos::subdynrankview( mv , Kokkos::ALL(), 1 ); const_svector_type cv3 = Kokkos::subdynrankview( mv , Kokkos::ALL(), 2 ); svector_type vr1 = Kokkos::subdynrankview( mv , Kokkos::ALL() , 0 ); svector_type vr2 = Kokkos::subdynrankview( mv , Kokkos::ALL() , 1 ); svector_type vr3 = Kokkos::subdynrankview( mv , Kokkos::ALL() , 2 ); const_svector_right_type cvr1 = Kokkos::subdynrankview( mv , Kokkos::ALL() , 0 ); const_svector_right_type cvr2 = Kokkos::subdynrankview( mv , Kokkos::ALL() , 1 ); const_svector_right_type cvr3 = Kokkos::subdynrankview( mv , Kokkos::ALL() , 2 ); ASSERT_TRUE( & v1[0] == & v1(0) ); ASSERT_TRUE( & v1[0] == & mv(0,0) ); ASSERT_TRUE( & v2[0] == & mv(0,1) ); ASSERT_TRUE( & v3[0] == & mv(0,2) ); ASSERT_TRUE( & cv1[0] == & mv(0,0) ); ASSERT_TRUE( & cv2[0] == & mv(0,1) ); ASSERT_TRUE( & cv3[0] == & mv(0,2) ); ASSERT_TRUE( & vr1[0] == & mv(0,0) ); ASSERT_TRUE( & vr2[0] == & mv(0,1) ); ASSERT_TRUE( & vr3[0] == & mv(0,2) ); ASSERT_TRUE( & cvr1[0] == & mv(0,0) ); ASSERT_TRUE( & cvr2[0] == & mv(0,1) ); ASSERT_TRUE( & cvr3[0] == & mv(0,2) ); ASSERT_TRUE( & mv1(0,0) == & mv( 1 , 2 ) ); ASSERT_TRUE( & mv1(1,1) == & mv( 2 , 3 ) ); ASSERT_TRUE( & mv1(3,2) == & mv( 4 , 4 ) ); ASSERT_TRUE( & mvr1(0,0) == & mv_right( 1 , 2 ) ); ASSERT_TRUE( & mvr1(1,1) == & mv_right( 2 , 3 ) ); ASSERT_TRUE( & mvr1(3,2) == & mv_right( 4 , 4 ) ); const_svector_type c_cv1( v1 ); typename svector_type::const_type c_cv2( v2 ); typename const_svector_type::const_type c_ccv2( v2 ); const_smultivector_type cmv( mv ); typename smultivector_type::const_type cmvX( cmv ); typename const_smultivector_type::const_type ccmvX( cmv ); } }; } // namespace Test /*--------------------------------------------------------------------------*/