/* //@HEADER // ************************************************************************ // // Kokkos v. 2.0 // Copyright (2014) Sandia Corporation // // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, // the U.S. Government retains certain rights in this software. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the Corporation nor the names of the // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Questions? Contact Christian R. Trott (crtrott@sandia.gov) // // ************************************************************************ //@HEADER */ #include #include /* Simple Lennard Jones Force Kernel using neighborlists * Calculates for every pair of atoms (i,j) with distance smaller r_cut * f_ij = 4*epsilon * ( (sigma/r_ij)^12 - (sigma/r_ij)^6 ) * where r_ij is the distance of atoms (i,j). * The force on atom i is the sum over f_ij: * f_i = sum_j (f_ij) * Neighborlists are used in order to pre calculate which atoms j are * close enough to i to be able to contribute. By choosing a larger neighbor * cutoff then the force cutoff, the neighbor list can be reused several times * (typically 10 - 100). */ struct ForceFunctor { typedef t_x_array::execution_space execution_space; //Device Type for running the kernel typedef double2 value_type; // When energy calculation is requested return energy, and virial t_x_array_randomread x; //atom positions t_f_array f; //atom forces t_int_1d_const numneigh; //number of neighbors per atom t_neighbors_const neighbors; //neighborlist double cutforcesq; //force cutoff double epsilon; //Potential parameter double sigma6; //Potential parameter ForceFunctor(System s) { x = s.d_x; f = s.f; numneigh = s.numneigh; neighbors = s.neighbors; cutforcesq = s.force_cutsq; epsilon = 1.0; sigma6 = 1.0; } /* Operator for not calculating energy and virial */ KOKKOS_INLINE_FUNCTION void operator() (const int &i) const { force<0>(i); } /* Operator for calculating energy and virial */ KOKKOS_INLINE_FUNCTION void operator() (const int &i, double2 &energy_virial) const { double2 ev = force<1>(i); energy_virial.x += ev.x; energy_virial.y += ev.y; } template KOKKOS_INLINE_FUNCTION double2 force(const int &i) const { const int numneighs = numneigh[i]; const double xtmp = x(i, 0); const double ytmp = x(i, 1); const double ztmp = x(i, 2); double fix = 0; double fiy = 0; double fiz = 0; double energy = 0; double virial = 0; //pragma simd forces vectorization (ignoring the performance objections of the compiler) //give hint to compiler that fix, fiy and fiz are used for reduction only #ifdef USE_SIMD #pragma simd reduction (+: fix,fiy,fiz,energy,virial) #endif for(int k = 0; k < numneighs; k++) { const int j = neighbors(i, k); const double delx = xtmp - x(j, 0); const double dely = ytmp - x(j, 1); const double delz = ztmp - x(j, 2); const double rsq = delx * delx + dely * dely + delz * delz; //if(i==0) printf("%i %i %lf %lf\n",i,j,rsq,cutforcesq); if(rsq < cutforcesq) { const double sr2 = 1.0 / rsq; const double sr6 = sr2 * sr2 * sr2 * sigma6; const double force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon; fix += delx * force; fiy += dely * force; fiz += delz * force; if(EVFLAG) { energy += sr6 * (sr6 - 1.0) * epsilon; virial += delx * delx * force + dely * dely * force + delz * delz * force; } } } f(i, 0) += fix; f(i, 1) += fiy; f(i, 2) += fiz; double2 energy_virial ; energy_virial.x = 4.0 * energy ; energy_virial.y = 0.5 * virial ; return energy_virial; } /* init and join functions when doing the reduction to obtain energy and virial */ KOKKOS_FUNCTION static void init(volatile value_type &update) { update.x = update.y = 0; } KOKKOS_FUNCTION static void join(volatile value_type &update , const volatile value_type &source) { update.x += source.x ; update.y += source.y ; } }; /* Calling function */ double2 force(System &s,int evflag) { ForceFunctor f(s); double2 ev ; ev.x = 0 ; ev.y = 0 ; if(!evflag) Kokkos::parallel_for(s.nlocal,f); else Kokkos::parallel_reduce(s.nlocal,f,ev); execution_space().fence(); return ev; }