/* //@HEADER // ************************************************************************ // // Kokkos v. 2.0 // Copyright (2014) Sandia Corporation // // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, // the U.S. Government retains certain rights in this software. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the Corporation nor the names of the // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Questions? Contact Christian R. Trott (crtrott@sandia.gov) // // ************************************************************************ //@HEADER */ #include #include #include #include #include namespace HybridFEM { namespace Implicit { //---------------------------------------------------------------------------- template< typename Scalar , unsigned Dim , unsigned N > struct TensorIntegration ; template struct TensorIntegration { Scalar pts[1] ; Scalar wts[1] ; TensorIntegration() { pts[0] = 0 ; wts[0] = 2 ; } }; template struct TensorIntegration { Scalar pts[2] ; Scalar wts[2] ; TensorIntegration() { const Scalar x2 = 0.577350269 ; pts[0] = -x2; wts[0] = 1.0; pts[1] = x2; wts[1] = 1.0; } }; template struct TensorIntegration { Scalar pts[3] ; Scalar wts[3] ; TensorIntegration() { const Scalar x3 = 0.774596669 ; const Scalar w1 = 0.555555556 ; const Scalar w2 = 0.888888889 ; pts[0] = -x3 ; wts[0] = w1 ; pts[1] = 0 ; wts[1] = w2 ; pts[2] = x3 ; wts[2] = w1 ; } }; template< typename Scalar , unsigned Order > struct TensorIntegration { static const unsigned N = Order * Order * Order ; Scalar pts[N][3] ; Scalar wts[N]; TensorIntegration() { TensorIntegration oneD ; unsigned n = 0 ; for ( unsigned k = 0 ; k < Order ; ++k ) { for ( unsigned j = 0 ; j < Order ; ++j ) { for ( unsigned i = 0 ; i < Order ; ++i , ++n ) { pts[n][0] = oneD.pts[i] ; pts[n][1] = oneD.pts[j] ; pts[n][2] = oneD.pts[k] ; wts[n] = oneD.wts[i] * oneD.wts[j] * oneD.wts[k] ; }}} } }; //---------------------------------------------------------------------------- template< typename Scalar > struct ShapeFunctionEvaluation { static const unsigned FunctionCount = 8 ; static const unsigned SpatialDimension = 3 ; static const unsigned IntegrationOrder = 2 ; typedef TensorIntegration< Scalar , SpatialDimension , IntegrationOrder > TensorIntegrationType ; static const unsigned PointCount = TensorIntegrationType::N ; Scalar value [ PointCount ][ FunctionCount ] ; Scalar gradient[ PointCount ][ FunctionCount * SpatialDimension ]; Scalar weight [ PointCount ]; ShapeFunctionEvaluation() { const TensorIntegration< Scalar , SpatialDimension , IntegrationOrder > integration ; const Scalar ONE8TH = 0.125 ; for ( unsigned i = 0 ; i < PointCount ; ++i ) { const Scalar u = 1.0 - integration.pts[i][0]; const Scalar v = 1.0 - integration.pts[i][1]; const Scalar w = 1.0 - integration.pts[i][2]; const Scalar up1 = 1.0 + integration.pts[i][0]; const Scalar vp1 = 1.0 + integration.pts[i][1]; const Scalar wp1 = 1.0 + integration.pts[i][2]; weight[i] = integration.wts[i] ; // Vaues: value[i][0] = ONE8TH * u * v * w ; value[i][1] = ONE8TH * up1 * v * w ; value[i][2] = ONE8TH * up1 * vp1 * w ; value[i][3] = ONE8TH * u * vp1 * w ; value[i][4] = ONE8TH * u * v * wp1 ; value[i][5] = ONE8TH * up1 * v * wp1 ; value[i][6] = ONE8TH * up1 * vp1 * wp1 ; value[i][7] = ONE8TH * u * vp1 * wp1 ; //fn 0 = u * v * w gradient[i][ 0] = ONE8TH * -1 * v * w ; gradient[i][ 1] = ONE8TH * u * -1 * w ; gradient[i][ 2] = ONE8TH * u * v * -1 ; //fn 1 = up1 * v * w gradient[i][ 3] = ONE8TH * 1 * v * w ; gradient[i][ 4] = ONE8TH * up1 * -1 * w ; gradient[i][ 5] = ONE8TH * up1 * v * -1 ; //fn 2 = up1 * vp1 * w gradient[i][ 6] = ONE8TH * 1 * vp1 * w ; gradient[i][ 7] = ONE8TH * up1 * 1 * w ; gradient[i][ 8] = ONE8TH * up1 * vp1 * -1 ; //fn 3 = u * vp1 * w gradient[i][ 9] = ONE8TH * -1 * vp1 * w ; gradient[i][10] = ONE8TH * u * 1 * w ; gradient[i][11] = ONE8TH * u * vp1 * -1 ; //fn 4 = u * v * wp1 gradient[i][12] = ONE8TH * -1 * v * wp1 ; gradient[i][13] = ONE8TH * u * -1 * wp1 ; gradient[i][14] = ONE8TH * u * v * 1 ; //fn 5 = up1 * v * wp1 gradient[i][15] = ONE8TH * 1 * v * wp1 ; gradient[i][16] = ONE8TH * up1 * -1 * wp1 ; gradient[i][17] = ONE8TH * up1 * v * 1 ; //fn 6 = up1 * vp1 * wp1 gradient[i][18] = ONE8TH * 1 * vp1 * wp1 ; gradient[i][19] = ONE8TH * up1 * 1 * wp1 ; gradient[i][20] = ONE8TH * up1 * vp1 * 1 ; //fn 7 = u * vp1 * wp1 gradient[i][21] = ONE8TH * -1 * vp1 * wp1 ; gradient[i][22] = ONE8TH * u * 1 * wp1 ; gradient[i][23] = ONE8TH * u * vp1 * 1 ; } } }; //---------------------------------------------------------------------------- template< typename ScalarType , typename ScalarCoordType , class DeviceType > struct ElementComputation { typedef DeviceType execution_space; typedef ScalarType scalar_type ; typedef typename execution_space::size_type size_type ; static const size_type ElementNodeCount = 8 ; typedef FEMesh< ScalarCoordType , ElementNodeCount , execution_space > mesh_type ; typedef Kokkos::View< scalar_type[][ElementNodeCount][ElementNodeCount] , execution_space > elem_matrices_type ; typedef Kokkos::View< scalar_type[][ElementNodeCount] , execution_space > elem_vectors_type ; typedef ShapeFunctionEvaluation< scalar_type > shape_function_data ; static const unsigned SpatialDim = shape_function_data::SpatialDimension ; static const unsigned FunctionCount = shape_function_data::FunctionCount ; private: const shape_function_data shape_eval ; typename mesh_type::elem_node_ids_type elem_node_ids ; typename mesh_type::node_coords_type node_coords ; elem_matrices_type element_matrices ; elem_vectors_type element_vectors ; scalar_type coeff_K ; scalar_type coeff_Q ; ElementComputation( const mesh_type & arg_mesh , const elem_matrices_type & arg_element_matrices , const elem_vectors_type & arg_element_vectors , const scalar_type arg_coeff_K , const scalar_type arg_coeff_Q ) : shape_eval() , elem_node_ids( arg_mesh.elem_node_ids ) , node_coords( arg_mesh.node_coords ) , element_matrices( arg_element_matrices ) , element_vectors( arg_element_vectors ) , coeff_K( arg_coeff_K ) , coeff_Q( arg_coeff_Q ) {} public: static void apply( const mesh_type & mesh , const elem_matrices_type & elem_matrices , const elem_vectors_type & elem_vectors , const scalar_type elem_coeff_K , const scalar_type elem_coeff_Q ) { ElementComputation comp( mesh , elem_matrices , elem_vectors , elem_coeff_K , elem_coeff_Q ); const size_t elem_count = mesh.elem_node_ids.dimension_0(); parallel_for( elem_count , comp ); } //------------------------------------ static const unsigned FLOPS_jacobian = FunctionCount * SpatialDim * SpatialDim * 2 ; KOKKOS_INLINE_FUNCTION void jacobian( const ScalarCoordType * x, const ScalarCoordType * y, const ScalarCoordType * z, const scalar_type * grad_vals, scalar_type * J) const { int i_grad = 0 ; for( unsigned i = 0; i < ElementNodeCount ; ++i , i_grad += SpatialDim ) { const scalar_type g0 = grad_vals[ i_grad ]; const scalar_type g1 = grad_vals[ i_grad + 1 ]; const scalar_type g2 = grad_vals[ i_grad + 2 ]; const scalar_type x0 = x[i] ; const scalar_type x1 = y[i] ; const scalar_type x2 = z[i] ; J[0] += g0 * x0 ; J[1] += g0 * x1 ; J[2] += g0 * x2 ; J[3] += g1 * x0 ; J[4] += g1 * x1 ; J[5] += g1 * x2 ; J[6] += g2 * x0 ; J[7] += g2 * x1 ; J[8] += g2 * x2 ; } } //------------------------------------ static const unsigned FLOPS_inverse_and_det = 46 ; KOKKOS_INLINE_FUNCTION scalar_type inverse_and_determinant3x3( scalar_type * const J ) const { const scalar_type J00 = J[0]; const scalar_type J01 = J[1]; const scalar_type J02 = J[2]; const scalar_type J10 = J[3]; const scalar_type J11 = J[4]; const scalar_type J12 = J[5]; const scalar_type J20 = J[6]; const scalar_type J21 = J[7]; const scalar_type J22 = J[8]; const scalar_type term0 = J22*J11 - J21*J12; const scalar_type term1 = J22*J01 - J21*J02; const scalar_type term2 = J12*J01 - J11*J02; const scalar_type detJ = J00*term0 - J10*term1 + J20*term2; const scalar_type inv_detJ = 1.0/detJ; J[0] = term0*inv_detJ; J[1] = -term1*inv_detJ; J[2] = term2*inv_detJ; J[3] = -(J22*J10 - J20*J12)*inv_detJ; J[4] = (J22*J00 - J20*J02)*inv_detJ; J[5] = -(J12*J00 - J10*J02)*inv_detJ; J[6] = (J21*J10 - J20*J11)*inv_detJ; J[7] = -(J21*J00 - J20*J01)*inv_detJ; J[8] = (J11*J00 - J10*J01)*inv_detJ; return detJ ; } //------------------------------------ KOKKOS_INLINE_FUNCTION void matTransMat3x3_X_3xn( const scalar_type * A, int n, const scalar_type * B, scalar_type * C ) const { //A is 3x3, B is 3xn. So C is also 3xn. //A,B,C are all assumed to be ordered such that columns are contiguous. scalar_type * Cj = C; const scalar_type * Bj = B; for(int j=0; j struct DirichletBoundary { typedef DeviceType execution_space; typedef typename execution_space::size_type size_type ; static const size_type ElementNodeCount = 8 ; typedef Kokkos::CrsMatrix< ScalarType , execution_space > matrix_type ; typedef Kokkos::View< ScalarType[] , execution_space > vector_type ; typedef FEMesh< ScalarCoordType , ElementNodeCount , execution_space > mesh_type ; typename mesh_type::node_coords_type node_coords ; matrix_type matrix ; vector_type rhs ; ScalarCoordType bc_lower_z ; ScalarCoordType bc_upper_z ; ScalarType bc_lower_value ; ScalarType bc_upper_value ; KOKKOS_INLINE_FUNCTION void operator()( size_type inode ) const { // Apply a dirichlet boundary condition to 'irow' // to maintain the symmetry of the original // global stiffness matrix, zero out the columns // that correspond to boundary conditions, and // adjust the load vector accordingly const size_type iBeg = matrix.graph.row_map[inode]; const size_type iEnd = matrix.graph.row_map[inode+1]; const ScalarCoordType z = node_coords(inode,2); const bool bc_lower = z <= bc_lower_z ; const bool bc_upper = bc_upper_z <= z ; if ( bc_lower || bc_upper ) { const ScalarType bc_value = bc_lower ? bc_lower_value : bc_upper_value ; rhs(inode) = bc_value ; // set the rhs vector // zero each value on the row, and leave a one // on the diagonal for( size_type i = iBeg ; i < iEnd ; i++) { matrix.coefficients(i) = (int) inode == matrix.graph.entries(i) ? 1 : 0 ; } } else { // Find any columns that are boundary conditions. // Clear them and adjust the load vector for( size_type i = iBeg ; i < iEnd ; i++ ) { const size_type cnode = matrix.graph.entries(i) ; const ScalarCoordType zc = node_coords(cnode,2); const bool c_bc_lower = zc <= bc_lower_z ; const bool c_bc_upper = bc_upper_z <= zc ; if ( c_bc_lower || c_bc_upper ) { const ScalarType c_bc_value = c_bc_lower ? bc_lower_value : bc_upper_value ; rhs( inode ) -= c_bc_value * matrix.coefficients(i); matrix.coefficients(i) = 0 ; } } } } static void apply( const matrix_type & linsys_matrix , const vector_type & linsys_rhs , const mesh_type & mesh , const ScalarCoordType bc_lower_z , const ScalarCoordType bc_upper_z , const ScalarType bc_lower_value , const ScalarType bc_upper_value ) { const size_t row_count = linsys_matrix.graph.row_map.dimension_0() - 1 ; DirichletBoundary op ; op.node_coords = mesh.node_coords ; op.matrix = linsys_matrix ; op.rhs = linsys_rhs ; op.bc_lower_z = bc_lower_z ; op.bc_upper_z = bc_upper_z ; op.bc_lower_value = bc_lower_value ; op.bc_upper_value = bc_upper_value ; parallel_for( row_count , op ); } }; //---------------------------------------------------------------------------- } /* namespace Implicit */ } /* namespace HybridFEM */