*> \brief \b CHER * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA) * * .. Scalar Arguments .. * REAL ALPHA * INTEGER INCX,LDA,N * CHARACTER UPLO * .. * .. Array Arguments .. * COMPLEX A(LDA,*),X(*) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CHER performs the hermitian rank 1 operation *> *> A := alpha*x*x**H + A, *> *> where alpha is a real scalar, x is an n element vector and A is an *> n by n hermitian matrix. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> On entry, UPLO specifies whether the upper or lower *> triangular part of the array A is to be referenced as *> follows: *> *> UPLO = 'U' or 'u' Only the upper triangular part of A *> is to be referenced. *> *> UPLO = 'L' or 'l' Only the lower triangular part of A *> is to be referenced. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> On entry, N specifies the order of the matrix A. *> N must be at least zero. *> \endverbatim *> *> \param[in] ALPHA *> \verbatim *> ALPHA is REAL *> On entry, ALPHA specifies the scalar alpha. *> \endverbatim *> *> \param[in] X *> \verbatim *> X is COMPLEX array, dimension at least *> ( 1 + ( n - 1 )*abs( INCX ) ). *> Before entry, the incremented array X must contain the n *> element vector x. *> \endverbatim *> *> \param[in] INCX *> \verbatim *> INCX is INTEGER *> On entry, INCX specifies the increment for the elements of *> X. INCX must not be zero. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension ( LDA, N ) *> Before entry with UPLO = 'U' or 'u', the leading n by n *> upper triangular part of the array A must contain the upper *> triangular part of the hermitian matrix and the strictly *> lower triangular part of A is not referenced. On exit, the *> upper triangular part of the array A is overwritten by the *> upper triangular part of the updated matrix. *> Before entry with UPLO = 'L' or 'l', the leading n by n *> lower triangular part of the array A must contain the lower *> triangular part of the hermitian matrix and the strictly *> upper triangular part of A is not referenced. On exit, the *> lower triangular part of the array A is overwritten by the *> lower triangular part of the updated matrix. *> Note that the imaginary parts of the diagonal elements need *> not be set, they are assumed to be zero, and on exit they *> are set to zero. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> On entry, LDA specifies the first dimension of A as declared *> in the calling (sub) program. LDA must be at least *> max( 1, n ). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_blas_level2 * *> \par Further Details: * ===================== *> *> \verbatim *> *> Level 2 Blas routine. *> *> -- Written on 22-October-1986. *> Jack Dongarra, Argonne National Lab. *> Jeremy Du Croz, Nag Central Office. *> Sven Hammarling, Nag Central Office. *> Richard Hanson, Sandia National Labs. *> \endverbatim *> * ===================================================================== SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA) * * -- Reference BLAS level2 routine -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. REAL ALPHA INTEGER INCX,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*) * .. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX,REAL * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHER ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in upper triangle. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(J)) DO 10 I = 1,J - 1 A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE A(J,J) = REAL(A(J,J)) + REAL(X(J)*TEMP) ELSE A(J,J) = REAL(A(J,J)) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(JX)) IX = KX DO 30 I = 1,J - 1 A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE A(J,J) = REAL(A(J,J)) + REAL(X(JX)*TEMP) ELSE A(J,J) = REAL(A(J,J)) END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(J)) A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(J)) DO 50 I = J + 1,N A(I,J) = A(I,J) + X(I)*TEMP 50 CONTINUE ELSE A(J,J) = REAL(A(J,J)) END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(JX)) A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(JX)) IX = JX DO 70 I = J + 1,N IX = IX + INCX A(I,J) = A(I,J) + X(IX)*TEMP 70 CONTINUE ELSE A(J,J) = REAL(A(J,J)) END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of CHER . * END