*> \brief \b CLATZM
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLATZM + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK )
*
* .. Scalar Arguments ..
* CHARACTER SIDE
* INTEGER INCV, LDC, M, N
* COMPLEX TAU
* ..
* .. Array Arguments ..
* COMPLEX C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> This routine is deprecated and has been replaced by routine CUNMRZ.
*>
*> CLATZM applies a Householder matrix generated by CTZRQF to a matrix.
*>
*> Let P = I - tau*u*u**H, u = ( 1 ),
*> ( v )
*> where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
*> SIDE = 'R'.
*>
*> If SIDE equals 'L', let
*> C = [ C1 ] 1
*> [ C2 ] m-1
*> n
*> Then C is overwritten by P*C.
*>
*> If SIDE equals 'R', let
*> C = [ C1, C2 ] m
*> 1 n-1
*> Then C is overwritten by C*P.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': form P * C
*> = 'R': form C * P
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is COMPLEX array, dimension
*> (1 + (M-1)*abs(INCV)) if SIDE = 'L'
*> (1 + (N-1)*abs(INCV)) if SIDE = 'R'
*> The vector v in the representation of P. V is not used
*> if TAU = 0.
*> \endverbatim
*>
*> \param[in] INCV
*> \verbatim
*> INCV is INTEGER
*> The increment between elements of v. INCV <> 0
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX
*> The value tau in the representation of P.
*> \endverbatim
*>
*> \param[in,out] C1
*> \verbatim
*> C1 is COMPLEX array, dimension
*> (LDC,N) if SIDE = 'L'
*> (M,1) if SIDE = 'R'
*> On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
*> if SIDE = 'R'.
*>
*> On exit, the first row of P*C if SIDE = 'L', or the first
*> column of C*P if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in,out] C2
*> \verbatim
*> C2 is COMPLEX array, dimension
*> (LDC, N) if SIDE = 'L'
*> (LDC, N-1) if SIDE = 'R'
*> On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
*> m x (n - 1) matrix C2 if SIDE = 'R'.
*>
*> On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
*> if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the arrays C1 and C2.
*> LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension
*> (N) if SIDE = 'L'
*> (M) if SIDE = 'R'
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE CLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER SIDE
INTEGER INCV, LDC, M, N
COMPLEX TAU
* ..
* .. Array Arguments ..
COMPLEX C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE, ZERO
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. External Subroutines ..
EXTERNAL CAXPY, CCOPY, CGEMV, CGERC, CGERU, CLACGV
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
IF( ( MIN( M, N ).EQ.0 ) .OR. ( TAU.EQ.ZERO ) )
$ RETURN
*
IF( LSAME( SIDE, 'L' ) ) THEN
*
* w := ( C1 + v**H * C2 )**H
*
CALL CCOPY( N, C1, LDC, WORK, 1 )
CALL CLACGV( N, WORK, 1 )
CALL CGEMV( 'Conjugate transpose', M-1, N, ONE, C2, LDC, V,
$ INCV, ONE, WORK, 1 )
*
* [ C1 ] := [ C1 ] - tau* [ 1 ] * w**H
* [ C2 ] [ C2 ] [ v ]
*
CALL CLACGV( N, WORK, 1 )
CALL CAXPY( N, -TAU, WORK, 1, C1, LDC )
CALL CGERU( M-1, N, -TAU, V, INCV, WORK, 1, C2, LDC )
*
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
* w := C1 + C2 * v
*
CALL CCOPY( M, C1, 1, WORK, 1 )
CALL CGEMV( 'No transpose', M, N-1, ONE, C2, LDC, V, INCV, ONE,
$ WORK, 1 )
*
* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**H]
*
CALL CAXPY( M, -TAU, WORK, 1, C1, 1 )
CALL CGERC( M, N-1, -TAU, WORK, 1, V, INCV, C2, LDC )
END IF
*
RETURN
*
* End of CLATZM
*
END