*> \brief \b CGETSQRHRT * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CGETSQRHRT + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, * $ LWORK, INFO ) * IMPLICIT NONE * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1 * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CGETSQRHRT computes a NB2-sized column blocked QR-factorization *> of a complex M-by-N matrix A with M >= N, *> *> A = Q * R. *> *> The routine uses internally a NB1-sized column blocked and MB1-sized *> row blocked TSQR-factorization and perfors the reconstruction *> of the Householder vectors from the TSQR output. The routine also *> converts the R_tsqr factor from the TSQR-factorization output into *> the R factor that corresponds to the Householder QR-factorization, *> *> A = Q_tsqr * R_tsqr = Q * R. *> *> The output Q and R factors are stored in the same format as in CGEQRT *> (Q is in blocked compact WY-representation). See the documentation *> of CGEQRT for more details on the format. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. M >= N >= 0. *> \endverbatim *> *> \param[in] MB1 *> \verbatim *> MB1 is INTEGER *> The row block size to be used in the blocked TSQR. *> MB1 > N. *> \endverbatim *> *> \param[in] NB1 *> \verbatim *> NB1 is INTEGER *> The column block size to be used in the blocked TSQR. *> N >= NB1 >= 1. *> \endverbatim *> *> \param[in] NB2 *> \verbatim *> NB2 is INTEGER *> The block size to be used in the blocked QR that is *> output. NB2 >= 1. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> *> On entry: an M-by-N matrix A. *> *> On exit: *> a) the elements on and above the diagonal *> of the array contain the N-by-N upper-triangular *> matrix R corresponding to the Householder QR; *> b) the elements below the diagonal represent Q by *> the columns of blocked V (compact WY-representation). *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[out] T *> \verbatim *> T is COMPLEX array, dimension (LDT,N)) *> The upper triangular block reflectors stored in compact form *> as a sequence of upper triangular blocks. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. LDT >= NB2. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> The dimension of the array WORK. *> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), *> where *> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)), *> NB1LOCAL = MIN(NB1,N). *> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL, *> LW1 = NB1LOCAL * N, *> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ), *> If LWORK = -1, then a workspace query is assumed. *> The routine only calculates the optimal size of the WORK *> array, returns this value as the first entry of the WORK *> array, and no error message related to LWORK is issued *> by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup comlpexOTHERcomputational * *> \par Contributors: * ================== *> *> \verbatim *> *> November 2020, Igor Kozachenko, *> Computer Science Division, *> University of California, Berkeley *> *> \endverbatim *> * ===================================================================== SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, $ LWORK, INFO ) IMPLICIT NONE * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1 * .. * .. Array Arguments .. COMPLEX A( LDA, * ), T( LDT, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX CONE PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL LQUERY INTEGER I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT, $ NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS * .. * .. External Subroutines .. EXTERNAL CCOPY, CLATSQR, CUNGTSQR_ROW, CUNHR_COL, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CEILING, REAL, CMPLX, MAX, MIN * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LQUERY = LWORK.EQ.-1 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 .OR. M.LT.N ) THEN INFO = -2 ELSE IF( MB1.LE.N ) THEN INFO = -3 ELSE IF( NB1.LT.1 ) THEN INFO = -4 ELSE IF( NB2.LT.1 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -7 ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN INFO = -9 ELSE * * Test the input LWORK for the dimension of the array WORK. * This workspace is used to store array: * a) Matrix T and WORK for CLATSQR; * b) N-by-N upper-triangular factor R_tsqr; * c) Matrix T and array WORK for CUNGTSQR_ROW; * d) Diagonal D for CUNHR_COL. * IF( LWORK.LT.N*N+1 .AND. .NOT.LQUERY ) THEN INFO = -11 ELSE * * Set block size for column blocks * NB1LOCAL = MIN( NB1, N ) * NUM_ALL_ROW_BLOCKS = MAX( 1, $ CEILING( REAL( M - N ) / REAL( MB1 - N ) ) ) * * Length and leading dimension of WORK array to place * T array in TSQR. * LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL LDWT = NB1LOCAL * * Length of TSQR work array * LW1 = NB1LOCAL * N * * Length of CUNGTSQR_ROW work array. * LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ) * LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ) * IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN INFO = -11 END IF * END IF END IF * * Handle error in the input parameters and return workspace query. * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGETSQRHRT', -INFO ) RETURN ELSE IF ( LQUERY ) THEN WORK( 1 ) = CMPLX( LWORKOPT ) RETURN END IF * * Quick return if possible * IF( MIN( M, N ).EQ.0 ) THEN WORK( 1 ) = CMPLX( LWORKOPT ) RETURN END IF * NB2LOCAL = MIN( NB2, N ) * * * (1) Perform TSQR-factorization of the M-by-N matrix A. * CALL CLATSQR( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT, $ WORK(LWT+1), LW1, IINFO ) * * (2) Copy the factor R_tsqr stored in the upper-triangular part * of A into the square matrix in the work array * WORK(LWT+1:LWT+N*N) column-by-column. * DO J = 1, N CALL CCOPY( J, A( 1, J ), 1, WORK( LWT + N*(J-1)+1 ), 1 ) END DO * * (3) Generate a M-by-N matrix Q with orthonormal columns from * the result stored below the diagonal in the array A in place. * CALL CUNGTSQR_ROW( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT, $ WORK( LWT+N*N+1 ), LW2, IINFO ) * * (4) Perform the reconstruction of Householder vectors from * the matrix Q (stored in A) in place. * CALL CUNHR_COL( M, N, NB2LOCAL, A, LDA, T, LDT, $ WORK( LWT+N*N+1 ), IINFO ) * * (5) Copy the factor R_tsqr stored in the square matrix in the * work array WORK(LWT+1:LWT+N*N) into the upper-triangular * part of A. * * (6) Compute from R_tsqr the factor R_hr corresponding to * the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr. * This multiplication by the sign matrix S on the left means * changing the sign of I-th row of the matrix R_tsqr according * to sign of the I-th diagonal element DIAG(I) of the matrix S. * DIAG is stored in WORK( LWT+N*N+1 ) from the CUNHR_COL output. * * (5) and (6) can be combined in a single loop, so the rows in A * are accessed only once. * DO I = 1, N IF( WORK( LWT+N*N+I ).EQ.-CONE ) THEN DO J = I, N A( I, J ) = -CONE * WORK( LWT+N*(J-1)+I ) END DO ELSE CALL CCOPY( N-I+1, WORK(LWT+N*(I-1)+I), N, A( I, I ), LDA ) END IF END DO * WORK( 1 ) = CMPLX( LWORKOPT ) RETURN * * End of CGETSQRHRT * END