*> \brief \b CHETRI_3X
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CHETRI_3X + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CHETRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDA, N, NB
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX A( LDA, * ), E( * ), WORK( N+NB+1, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*> CHETRI_3X computes the inverse of a complex Hermitian indefinite
*> matrix A using the factorization computed by CHETRF_RK or CHETRF_BK:
*>
*> A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
*>
*> where U (or L) is unit upper (or lower) triangular matrix,
*> U**H (or L**H) is the conjugate of U (or L), P is a permutation
*> matrix, P**T is the transpose of P, and D is Hermitian and block
*> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
*>
*> This is the blocked version of the algorithm, calling Level 3 BLAS.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the details of the factorization are
*> stored as an upper or lower triangular matrix.
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, diagonal of the block diagonal matrix D and
*> factors U or L as computed by CHETRF_RK and CHETRF_BK:
*> a) ONLY diagonal elements of the Hermitian block diagonal
*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*> (superdiagonal (or subdiagonal) elements of D
*> should be provided on entry in array E), and
*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
*> If UPLO = 'L': factor L in the subdiagonal part of A.
*>
*> On exit, if INFO = 0, the Hermitian inverse of the original
*> matrix.
*> If UPLO = 'U': the upper triangular part of the inverse
*> is formed and the part of A below the diagonal is not
*> referenced;
*> If UPLO = 'L': the lower triangular part of the inverse
*> is formed and the part of A above the diagonal is not
*> referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is COMPLEX array, dimension (N)
*> On entry, contains the superdiagonal (or subdiagonal)
*> elements of the Hermitian block diagonal matrix D
*> with 1-by-1 or 2-by-2 diagonal blocks, where
*> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
*> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
*>
*> NOTE: For 1-by-1 diagonal block D(k), where
*> 1 <= k <= N, the element E(k) is not referenced in both
*> UPLO = 'U' or UPLO = 'L' cases.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> Details of the interchanges and the block structure of D
*> as determined by CHETRF_RK or CHETRF_BK.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (N+NB+1,NB+3).
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> Block size.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
*> inverse could not be computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexHEcomputational
*
*> \par Contributors:
* ==================
*> \verbatim
*>
*> June 2017, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*>
*> \endverbatim
*
* =====================================================================
SUBROUTINE CHETRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N, NB
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), E( * ), WORK( N+NB+1, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
COMPLEX CONE, CZERO
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
$ CZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
REAL AK, AKP1, T
COMPLEX AKKP1, D, U01_I_J, U01_IP1_J, U11_I_J,
$ U11_IP1_J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CGEMM, CHESWAPR, CTRTRI, CTRMM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX, REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
*
* Quick return if possible
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHETRI_3X', -INFO )
RETURN
END IF
IF( N.EQ.0 )
$ RETURN
*
* Workspace got Non-diag elements of D
*
DO K = 1, N
WORK( K, 1 ) = E( K )
END DO
*
* Check that the diagonal matrix D is nonsingular.
*
IF( UPPER ) THEN
*
* Upper triangular storage: examine D from bottom to top
*
DO INFO = N, 1, -1
IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
$ RETURN
END DO
ELSE
*
* Lower triangular storage: examine D from top to bottom.
*
DO INFO = 1, N
IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
$ RETURN
END DO
END IF
*
INFO = 0
*
* Splitting Workspace
* U01 is a block ( N, NB+1 )
* The first element of U01 is in WORK( 1, 1 )
* U11 is a block ( NB+1, NB+1 )
* The first element of U11 is in WORK( N+1, 1 )
*
U11 = N
*
* INVD is a block ( N, 2 )
* The first element of INVD is in WORK( 1, INVD )
*
INVD = NB + 2
IF( UPPER ) THEN
*
* Begin Upper
*
* invA = P * inv(U**H) * inv(D) * inv(U) * P**T.
*
CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
*
* inv(D) and inv(D) * inv(U)
*
K = 1
DO WHILE( K.LE.N )
IF( IPIV( K ).GT.0 ) THEN
* 1 x 1 diagonal NNB
WORK( K, INVD ) = ONE / REAL( A( K, K ) )
WORK( K, INVD+1 ) = CZERO
ELSE
* 2 x 2 diagonal NNB
T = ABS( WORK( K+1, 1 ) )
AK = REAL( A( K, K ) ) / T
AKP1 = REAL( A( K+1, K+1 ) ) / T
AKKP1 = WORK( K+1, 1 ) / T
D = T*( AK*AKP1-CONE )
WORK( K, INVD ) = AKP1 / D
WORK( K+1, INVD+1 ) = AK / D
WORK( K, INVD+1 ) = -AKKP1 / D
WORK( K+1, INVD ) = CONJG( WORK( K, INVD+1 ) )
K = K + 1
END IF
K = K + 1
END DO
*
* inv(U**H) = (inv(U))**H
*
* inv(U**H) * inv(D) * inv(U)
*
CUT = N
DO WHILE( CUT.GT.0 )
NNB = NB
IF( CUT.LE.NNB ) THEN
NNB = CUT
ELSE
ICOUNT = 0
* count negative elements,
DO I = CUT+1-NNB, CUT
IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
END DO
* need a even number for a clear cut
IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
END IF
CUT = CUT - NNB
*
* U01 Block
*
DO I = 1, CUT
DO J = 1, NNB
WORK( I, J ) = A( I, CUT+J )
END DO
END DO
*
* U11 Block
*
DO I = 1, NNB
WORK( U11+I, I ) = CONE
DO J = 1, I-1
WORK( U11+I, J ) = CZERO
END DO
DO J = I+1, NNB
WORK( U11+I, J ) = A( CUT+I, CUT+J )
END DO
END DO
*
* invD * U01
*
I = 1
DO WHILE( I.LE.CUT )
IF( IPIV( I ).GT.0 ) THEN
DO J = 1, NNB
WORK( I, J ) = WORK( I, INVD ) * WORK( I, J )
END DO
ELSE
DO J = 1, NNB
U01_I_J = WORK( I, J )
U01_IP1_J = WORK( I+1, J )
WORK( I, J ) = WORK( I, INVD ) * U01_I_J
$ + WORK( I, INVD+1 ) * U01_IP1_J
WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J
$ + WORK( I+1, INVD+1 ) * U01_IP1_J
END DO
I = I + 1
END IF
I = I + 1
END DO
*
* invD1 * U11
*
I = 1
DO WHILE ( I.LE.NNB )
IF( IPIV( CUT+I ).GT.0 ) THEN
DO J = I, NNB
WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
END DO
ELSE
DO J = I, NNB
U11_I_J = WORK(U11+I,J)
U11_IP1_J = WORK(U11+I+1,J)
WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
$ + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J)
WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J
$ + WORK(CUT+I+1,INVD+1) * U11_IP1_J
END DO
I = I + 1
END IF
I = I + 1
END DO
*
* U11**H * invD1 * U11 -> U11
*
CALL CTRMM( 'L', 'U', 'C', 'U', NNB, NNB,
$ CONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
$ N+NB+1 )
*
DO I = 1, NNB
DO J = I, NNB
A( CUT+I, CUT+J ) = WORK( U11+I, J )
END DO
END DO
*
* U01**H * invD * U01 -> A( CUT+I, CUT+J )
*
CALL CGEMM( 'C', 'N', NNB, NNB, CUT, CONE, A( 1, CUT+1 ),
$ LDA, WORK, N+NB+1, CZERO, WORK(U11+1,1),
$ N+NB+1 )
*
* U11 = U11**H * invD1 * U11 + U01**H * invD * U01
*
DO I = 1, NNB
DO J = I, NNB
A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J)
END DO
END DO
*
* U01 = U00**H * invD0 * U01
*
CALL CTRMM( 'L', UPLO, 'C', 'U', CUT, NNB,
$ CONE, A, LDA, WORK, N+NB+1 )
*
* Update U01
*
DO I = 1, CUT
DO J = 1, NNB
A( I, CUT+J ) = WORK( I, J )
END DO
END DO
*
* Next Block
*
END DO
*
* Apply PERMUTATIONS P and P**T:
* P * inv(U**H) * inv(D) * inv(U) * P**T.
* Interchange rows and columns I and IPIV(I) in reverse order
* from the formation order of IPIV vector for Upper case.
*
* ( We can use a loop over IPIV with increment 1,
* since the ABS value of IPIV(I) represents the row (column)
* index of the interchange with row (column) i in both 1x1
* and 2x2 pivot cases, i.e. we don't need separate code branches
* for 1x1 and 2x2 pivot cases )
*
DO I = 1, N
IP = ABS( IPIV( I ) )
IF( IP.NE.I ) THEN
IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, LDA, I ,IP )
IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, LDA, IP ,I )
END IF
END DO
*
ELSE
*
* Begin Lower
*
* inv A = P * inv(L**H) * inv(D) * inv(L) * P**T.
*
CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
*
* inv(D) and inv(D) * inv(L)
*
K = N
DO WHILE ( K .GE. 1 )
IF( IPIV( K ).GT.0 ) THEN
* 1 x 1 diagonal NNB
WORK( K, INVD ) = ONE / REAL( A( K, K ) )
WORK( K, INVD+1 ) = CZERO
ELSE
* 2 x 2 diagonal NNB
T = ABS( WORK( K-1, 1 ) )
AK = REAL( A( K-1, K-1 ) ) / T
AKP1 = REAL( A( K, K ) ) / T
AKKP1 = WORK( K-1, 1 ) / T
D = T*( AK*AKP1-CONE )
WORK( K-1, INVD ) = AKP1 / D
WORK( K, INVD ) = AK / D
WORK( K, INVD+1 ) = -AKKP1 / D
WORK( K-1, INVD+1 ) = CONJG( WORK( K, INVD+1 ) )
K = K - 1
END IF
K = K - 1
END DO
*
* inv(L**H) = (inv(L))**H
*
* inv(L**H) * inv(D) * inv(L)
*
CUT = 0
DO WHILE( CUT.LT.N )
NNB = NB
IF( (CUT + NNB).GT.N ) THEN
NNB = N - CUT
ELSE
ICOUNT = 0
* count negative elements,
DO I = CUT + 1, CUT+NNB
IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
END DO
* need a even number for a clear cut
IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
END IF
*
* L21 Block
*
DO I = 1, N-CUT-NNB
DO J = 1, NNB
WORK( I, J ) = A( CUT+NNB+I, CUT+J )
END DO
END DO
*
* L11 Block
*
DO I = 1, NNB
WORK( U11+I, I) = CONE
DO J = I+1, NNB
WORK( U11+I, J ) = CZERO
END DO
DO J = 1, I-1
WORK( U11+I, J ) = A( CUT+I, CUT+J )
END DO
END DO
*
* invD*L21
*
I = N-CUT-NNB
DO WHILE( I.GE.1 )
IF( IPIV( CUT+NNB+I ).GT.0 ) THEN
DO J = 1, NNB
WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J)
END DO
ELSE
DO J = 1, NNB
U01_I_J = WORK(I,J)
U01_IP1_J = WORK(I-1,J)
WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
$ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
$ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
END DO
I = I - 1
END IF
I = I - 1
END DO
*
* invD1*L11
*
I = NNB
DO WHILE( I.GE.1 )
IF( IPIV( CUT+I ).GT.0 ) THEN
DO J = 1, NNB
WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J)
END DO
ELSE
DO J = 1, NNB
U11_I_J = WORK( U11+I, J )
U11_IP1_J = WORK( U11+I-1, J )
WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
$ + WORK(CUT+I,INVD+1) * U11_IP1_J
WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J
$ + WORK(CUT+I-1,INVD) * U11_IP1_J
END DO
I = I - 1
END IF
I = I - 1
END DO
*
* L11**H * invD1 * L11 -> L11
*
CALL CTRMM( 'L', UPLO, 'C', 'U', NNB, NNB, CONE,
$ A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
$ N+NB+1 )
*
DO I = 1, NNB
DO J = 1, I
A( CUT+I, CUT+J ) = WORK( U11+I, J )
END DO
END DO
*
IF( (CUT+NNB).LT.N ) THEN
*
* L21**H * invD2*L21 -> A( CUT+I, CUT+J )
*
CALL CGEMM( 'C', 'N', NNB, NNB, N-NNB-CUT, CONE,
$ A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1,
$ CZERO, WORK( U11+1, 1 ), N+NB+1 )
*
* L11 = L11**H * invD1 * L11 + U01**H * invD * U01
*
DO I = 1, NNB
DO J = 1, I
A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J)
END DO
END DO
*
* L01 = L22**H * invD2 * L21
*
CALL CTRMM( 'L', UPLO, 'C', 'U', N-NNB-CUT, NNB, CONE,
$ A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK,
$ N+NB+1 )
*
* Update L21
*
DO I = 1, N-CUT-NNB
DO J = 1, NNB
A( CUT+NNB+I, CUT+J ) = WORK( I, J )
END DO
END DO
*
ELSE
*
* L11 = L11**H * invD1 * L11
*
DO I = 1, NNB
DO J = 1, I
A( CUT+I, CUT+J ) = WORK( U11+I, J )
END DO
END DO
END IF
*
* Next Block
*
CUT = CUT + NNB
*
END DO
*
* Apply PERMUTATIONS P and P**T:
* P * inv(L**H) * inv(D) * inv(L) * P**T.
* Interchange rows and columns I and IPIV(I) in reverse order
* from the formation order of IPIV vector for Lower case.
*
* ( We can use a loop over IPIV with increment -1,
* since the ABS value of IPIV(I) represents the row (column)
* index of the interchange with row (column) i in both 1x1
* and 2x2 pivot cases, i.e. we don't need separate code branches
* for 1x1 and 2x2 pivot cases )
*
DO I = N, 1, -1
IP = ABS( IPIV( I ) )
IF( IP.NE.I ) THEN
IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, LDA, I ,IP )
IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, LDA, IP ,I )
END IF
END DO
*
END IF
*
RETURN
*
* End of CHETRI_3X
*
END