*> \brief \b CLA_WWADDW adds a vector into a doubled-single vector.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLA_WWADDW + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLA_WWADDW( N, X, Y, W )
*
* .. Scalar Arguments ..
* INTEGER N
* ..
* .. Array Arguments ..
* COMPLEX X( * ), Y( * ), W( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLA_WWADDW adds a vector W into a doubled-single vector (X, Y).
*>
*> This works for all extant IBM's hex and binary floating point
*> arithmetic, but not for decimal.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The length of vectors X, Y, and W.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX array, dimension (N)
*> The first part of the doubled-single accumulation vector.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*> Y is COMPLEX array, dimension (N)
*> The second part of the doubled-single accumulation vector.
*> \endverbatim
*>
*> \param[in] W
*> \verbatim
*> W is COMPLEX array, dimension (N)
*> The vector to be added.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE CLA_WWADDW( N, X, Y, W )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER N
* ..
* .. Array Arguments ..
COMPLEX X( * ), Y( * ), W( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
COMPLEX S
INTEGER I
* ..
* .. Executable Statements ..
*
DO 10 I = 1, N
S = X(I) + W(I)
S = (S + S) - S
Y(I) = ((X(I) - S) + W(I)) + Y(I)
X(I) = S
10 CONTINUE
RETURN
END