*> \brief \b CLAMSWLQ * * Definition: * =========== * * SUBROUTINE CLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * $ LDT, C, LDC, WORK, LWORK, INFO ) * * * .. Scalar Arguments .. * CHARACTER SIDE, TRANS * INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. * COMPLEX A( LDA, * ), WORK( * ), C(LDC, * ), * $ T( LDT, * ) *> \par Purpose: * ============= *> *> \verbatim *> *> CLAMQRTS overwrites the general real M-by-N matrix C with *> *> *> SIDE = 'L' SIDE = 'R' *> TRANS = 'N': Q * C C * Q *> TRANS = 'T': Q**H * C C * Q**H *> where Q is a real orthogonal matrix defined as the product of blocked *> elementary reflectors computed by short wide LQ *> factorization (CLASWLQ) *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE *> \verbatim *> SIDE is CHARACTER*1 *> = 'L': apply Q or Q**H from the Left; *> = 'R': apply Q or Q**H from the Right. *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> = 'N': No transpose, apply Q; *> = 'C': Transpose, apply Q**H. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix C. M >=0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix C. N >= M. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> The number of elementary reflectors whose product defines *> the matrix Q. *> M >= K >= 0; *> *> \endverbatim *> \param[in] MB *> \verbatim *> MB is INTEGER *> The row block size to be used in the blocked QR. *> M >= MB >= 1 *> \endverbatim *> *> \param[in] NB *> \verbatim *> NB is INTEGER *> The column block size to be used in the blocked QR. *> NB > M. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension *> (LDA,M) if SIDE = 'L', *> (LDA,N) if SIDE = 'R' *> The i-th row must contain the vector which defines the blocked *> elementary reflector H(i), for i = 1,2,...,k, as returned by *> CLASWLQ in the first k rows of its array argument A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. *> If SIDE = 'L', LDA >= max(1,M); *> if SIDE = 'R', LDA >= max(1,N). *> \endverbatim *> *> \param[in] T *> \verbatim *> T is COMPLEX array, dimension *> ( M * Number of blocks(CEIL(N-K/NB-K)), *> The blocked upper triangular block reflectors stored in compact form *> as a sequence of upper triangular blocks. See below *> for further details. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. LDT >= MB. *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is COMPLEX array, dimension (LDC,N) *> On entry, the M-by-N matrix C. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,M). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> If SIDE = 'L', LWORK >= max(1,NB) * MB; *> if SIDE = 'R', LWORK >= max(1,M) * MB. *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \par Further Details: * ===================== *> *> \verbatim *> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations, *> representing Q as a product of other orthogonal matrices *> Q = Q(1) * Q(2) * . . . * Q(k) *> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A: *> Q(1) zeros out the upper diagonal entries of rows 1:NB of A *> Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A *> Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A *> . . . *> *> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors *> stored under the diagonal of rows 1:MB of A, and by upper triangular *> block reflectors, stored in array T(1:LDT,1:N). *> For more information see Further Details in GELQT. *> *> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors *> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular *> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M). *> The last Q(k) may use fewer rows. *> For more information see Further Details in TPQRT. *> *> For more details of the overall algorithm, see the description of *> Sequential TSQR in Section 2.2 of [1]. *> *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,” *> J. Demmel, L. Grigori, M. Hoemmen, J. Langou, *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> * ===================================================================== SUBROUTINE CLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, $ LDT, C, LDC, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER SIDE, TRANS INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. COMPLEX A( LDA, * ), WORK( * ), C(LDC, * ), $ T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY INTEGER I, II, KK, LW, CTR * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL CTPMLQT, CGEMLQT, XERBLA * .. * .. Executable Statements .. * * Test the input arguments * LQUERY = LWORK.LT.0 NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) IF (LEFT) THEN LW = N * MB ELSE LW = M * MB END IF * INFO = 0 IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( K.LT.0 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -9 ELSE IF( LDT.LT.MAX( 1, MB) ) THEN INFO = -11 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -13 ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN INFO = -15 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLAMSWLQ', -INFO ) WORK(1) = LW RETURN ELSE IF (LQUERY) THEN WORK(1) = LW RETURN END IF * * Quick return if possible * IF( MIN(M,N,K).EQ.0 ) THEN RETURN END IF * IF((NB.LE.K).OR.(NB.GE.MAX(M,N,K))) THEN CALL CGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA, $ T, LDT, C, LDC, WORK, INFO) RETURN END IF * IF(LEFT.AND.TRAN) THEN * * Multiply Q to the last block of C * KK = MOD((M-K),(NB-K)) CTR = (M-K)/(NB-K) IF (KK.GT.0) THEN II=M-KK+1 CALL CTPMLQT('L','C',KK , N, K, 0, MB, A(1,II), LDA, $ T(1,CTR*K+1), LDT, C(1,1), LDC, $ C(II,1), LDC, WORK, INFO ) ELSE II=M+1 END IF * DO I=II-(NB-K),NB+1,-(NB-K) * * Multiply Q to the current block of C (1:M,I:I+NB) * CTR = CTR - 1 CALL CTPMLQT('L','C',NB-K , N, K, 0,MB, A(1,I), LDA, $ T(1,CTR*K+1),LDT, C(1,1), LDC, $ C(I,1), LDC, WORK, INFO ) END DO * * Multiply Q to the first block of C (1:M,1:NB) * CALL CGEMLQT('L','C',NB , N, K, MB, A(1,1), LDA, T $ ,LDT ,C(1,1), LDC, WORK, INFO ) * ELSE IF (LEFT.AND.NOTRAN) THEN * * Multiply Q to the first block of C * KK = MOD((M-K),(NB-K)) II = M-KK+1 CTR = 1 CALL CGEMLQT('L','N',NB , N, K, MB, A(1,1), LDA, T $ ,LDT ,C(1,1), LDC, WORK, INFO ) * DO I=NB+1,II-NB+K,(NB-K) * * Multiply Q to the current block of C (I:I+NB,1:N) * CALL CTPMLQT('L','N',NB-K , N, K, 0,MB, A(1,I), LDA, $ T(1, CTR *K+1), LDT, C(1,1), LDC, $ C(I,1), LDC, WORK, INFO ) CTR = CTR + 1 * END DO IF(II.LE.M) THEN * * Multiply Q to the last block of C * CALL CTPMLQT('L','N',KK , N, K, 0, MB, A(1,II), LDA, $ T(1, CTR*K+1), LDT, C(1,1), LDC, $ C(II,1), LDC, WORK, INFO ) * END IF * ELSE IF(RIGHT.AND.NOTRAN) THEN * * Multiply Q to the last block of C * KK = MOD((N-K),(NB-K)) CTR = (N-K)/(NB-K) IF (KK.GT.0) THEN II=N-KK+1 CALL CTPMLQT('R','N',M , KK, K, 0, MB, A(1, II), LDA, $ T(1,CTR*K+1), LDT, C(1,1), LDC, $ C(1,II), LDC, WORK, INFO ) ELSE II=N+1 END IF * DO I=II-(NB-K),NB+1,-(NB-K) * * Multiply Q to the current block of C (1:M,I:I+MB) * CTR = CTR - 1 CALL CTPMLQT('R','N', M, NB-K, K, 0, MB, A(1, I), LDA, $ T(1,CTR*K+1), LDT, C(1,1), LDC, $ C(1,I), LDC, WORK, INFO ) END DO * * Multiply Q to the first block of C (1:M,1:MB) * CALL CGEMLQT('R','N',M , NB, K, MB, A(1,1), LDA, T $ ,LDT ,C(1,1), LDC, WORK, INFO ) * ELSE IF (RIGHT.AND.TRAN) THEN * * Multiply Q to the first block of C * KK = MOD((N-K),(NB-K)) II=N-KK+1 CTR = 1 CALL CGEMLQT('R','C',M , NB, K, MB, A(1,1), LDA, T $ ,LDT ,C(1,1), LDC, WORK, INFO ) * DO I=NB+1,II-NB+K,(NB-K) * * Multiply Q to the current block of C (1:M,I:I+MB) * CALL CTPMLQT('R','C',M , NB-K, K, 0,MB, A(1,I), LDA, $ T(1,CTR*K+1), LDT, C(1,1), LDC, $ C(1,I), LDC, WORK, INFO ) CTR = CTR + 1 * END DO IF(II.LE.N) THEN * * Multiply Q to the last block of C * CALL CTPMLQT('R','C',M , KK, K, 0,MB, A(1,II), LDA, $ T(1,CTR*K+1),LDT, C(1,1), LDC, $ C(1,II), LDC, WORK, INFO ) * END IF * END IF * WORK(1) = LW RETURN * * End of CLAMSWLQ * END